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In this paper, the design of minimum-fuel maneuvers for multispacecraft interferometric imaging systems is

studied. It is argued that the underlying optimization problem is computationally intractable, through its similarity

to the traveling salesman problem, and through an optimal control argument, and thus it is necessary to resort to

heuristics in order to solve the problem. The design of minimum-fuel spiral maneuvers is considered in defining the

constraints on the coverage of theu–vplane. It is shown that the geometric design problem, the optimization problem

obtained by fixing the angular rate of the spiral, and the kinematic design problem, obtained by fixing the spiraling

rate of the spiral, are both convex in deep space, that is, perturbation free motion, and in near-Earth orbits. As an

application of the methodology developed, fuel optimal maneuvers are found for a deep space imaging application

and the fuel consumption and power requirements of the system are calculated to gain knowledge about the

feasibility of such maneuvers.

Nomenclature

Âp = Fourier transform of the field of view
ar = radial acceleration
at = tangential acceleration
C = parameter indicating the factor of

misclassification of the image feature
Ejxj = expected value of x
e = image error
Î = actual image
Îp = formed image
Isp = specific impulse
k = expansion rate of the spiral maneuver
M = modulation transfer function
m = number of rings given by the configuration
N = noise in the image process
ns = number of spacecraft in the maneuver
q = variable in the optimization problem describing

the time spent at a given frequency
R = radius of space plane coverage
r = radial distance to the center of maneuver
supx2Sf�x� = supremum value of f�x� for x 2 S
T = time of maneuver
vr = radial velocity
vt = tangential velocity
�z = distance to the target
� = proportionality factor of distance between

spacecraft
� = multiplicity factor given the symmetry of the

formation
�� = parameter proportional to the required light

acquisition
�rmn = distance between the mth and the nth spacecraft
� = wavelength of radiation

� = rate of arrival of photons to one collecting
telescope

� = frequency
� = ratio between radius of coverage and size of disk

in the frequency plane
! = angular velocity

I. Introduction

T HE research presented in this paper is motivated by the prospect
of taking high resolution images of extrasolar planets at

distances of up to 15 parsecs‡ and other high resolution imaging
applications. This high resolution imaging is to be performed by a
multispacecraft interferometric imaging system (MSIIS). Different
technologies that could be used for these missions have been studied
[1,2].

It is known that if the goal of imaging is formulated as the correct
classification of the formed images, satisfactory imaging by an
MSIIS is analogous to the “painting” of a large resolution disk with
smaller “coverage” disks or “paintbrushes” while maintaining a
minimum thickness of paint [3–7]. In this paper the design of
minimum-fuel maneuvers subject to the above mentioned
constraints is considered. It is shown that the minimum-fuel
problem is similar to the traveling salesman problem [8,9], which is
known to be computationally intractable when the number of cities is
large. In such cases, heuristics need to be used in order to make the
problem tractable. Spirals form a class of trajectories that satisfy the
coverage constraints and it was shown in previous work that the
space of spiral maneuvers forms the dominant set for minimum time
problems [4–6]. In this paper, minimum-fuel spiral maneuvers are
considered. It is shown that the geometric design problem, obtained
by fixing the angular rate in the minimum-fuel problem, and the
kinematic design problem, obtained by fixing the spiraling rate in the
minimum-fuel problem, are convex and therefore can be solved
conveniently for very large dimensions. The minimum-fuel problem
is numerically solved in deep space (i.e., perturbation free or gravity
free motion) for arbitrary number of spacecraft and the constraints
that such maneuvers place on the development of appropriate
propulsion technologies.

The problem of design ofMSIIS is related to the fields of synthetic
aperture optics and formation flying. The relationship of the present
work to these topics is discussed next. The topic of long baseline
interferometry falls under the category of synthetic aperture optics
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[10], that was first developed in the context of synthetic aperture
radars (SAR) [11]. The method consists of emulating a large optical
instrument by a number of smaller ones and combining their
contributions in a proper way to obtain an image that has resolution
comparable to that of the large optical instrument. For a discussion of
the various metrics used in the optimization of these systems, please
refer to previous work [4]. All the abovementioned designs optimize
the locations of the constituent telescopes such that some metric of
image quality is maximized. Thus, these correspond to static
optimization problems. However, for an MSIIS, due to the high
resolution requirements, the “design variables” are the trajectories of
the constituent spacecraft. The explicit dependence of the (MTF) on
the trajectories of the constituent spacecraft has been defined in
previous work [4,7]. Also, it is shown that the design of an MSIIS
reduces to a trajectory optimization problem, where some resource
utilization of the system is minimized while satisfying the imaging
constraints placed on the trajectories of the constituent spacecraft.
Some authors have proposed various different maneuvers and
schemes for the imaging problem and have compared the different
approaches [12–15]. However, an optimization problem for the
design of such systems, for more than three spacecraft, has not been
posed or solved. In previous work, a minimum time problem is
solved under certain assumptions [4–6]. In this paper, the minimum-
fuel problem is formulated for arbitrary number of spacecraft, and its
computational intractability is shown. Therefore, an heuristic
approach is used to find a solution of the problem in the space of
spiral maneuvers.

The original contributions of this paper are as follows:
1) The computational intractability of the minimum-fuel problem

for the design of maneuvers for an MSIIS is shown, through its
similarity to the traveling salesman problem and an optimal control
argument, and therefore, the need to resort to heuristics in order to
solve the problem. The heuristic proposed is the class of spiral
trajectories because they satisfy the coverage constraints in a very
straightforward and intuitive fashion.

2) The problem is posedwith respect to the space of spirals and the
minimum-fuel double pantograph problem obtained. It is shown that
the kinematic design problem and the geometric design problems,
obtained by fixing the spiral rate and the angular rate, respectively, in
the minimum-fuel problem, are convex in free space and for near-
Earth operation, and thus amenable to solution even for very large
dimensions.

3) The fuel optimal spiral maneuvers are obtained and the
expected behavior of solutions corroborated, namely that minimum-
fuel consumption is achieved by the loosest spiral maneuver, that is,
the spiral with the largest spiraling rate. Further, the fuel expenditure
of suchmaneuvers is evaluated and it is concluded that such imaging
maneuvers might be feasible using current/proposed propulsion
technologies.

The rest of the paper is organized as follows. In Sec. II, the problem
of design of anMSIIS is formulated. In Sec. III, the imaging problem
is framed as a painting problem and its intractability shown. In
Sec. IV, theminimum-fuel problemwith respect to spiral trajectories
is posed and the minimum-fuel double pantograph problem
obtained. In Sec. V, it is shown that the kinematic design and
geometric design problem are convex in deep space and for near-
Earth operation. In Sec. VI, numerical solutions are obtained to the
fuel optimal control problem for spiralmaneuvers in deep space,with
multiple spacecraft and the implications of the results discussed,with
regard to the feasibility of such maneuvers.

II. Modeling and Problem Formulation

In previous work [4,7], it was shown that the imaging constraints
on an MSIIS translate into trajectory constraints on the constituent
spacecraft of the system. In this section, the problem of designing
minimum-fuel maneuvers for an MSIIS is posed such that the
imaging constraints are satisfied. Some results from that earlier work
are here recounted [3,4,7].

The formation of the image in an MSIIS can be represented as
follows in the spatial frequency (wave number) domain:

Î p��� � Î��� � e��� (1)

Also, it is known that

e��� � N���
M��� (2)

where the numerator N��� is the noise inherent in the imaging
process. The denominator M��� is the MTF of the synthesized
optical instrument at the spatial frequency �. It is further known that
both N��� and M��� are dependent on the trajectories of the
constituent spacecraft of the MSIIS and that the noise term N��� is
Gaussian. Some conditions on the noise process e have obtained,
specifically in terms of its second order moments, the mean squared
error and the worst case error (WCE), such that some level of
classification performance is guaranteed [5]. It is known that the
functional dependence of N��� and M��� on the trajectories of the
constituent spacecraft of an MSIIS is given by the following
relationship [3,4]:

M��� �
Xns
m�1

Xns
n�1

Z
T

0

Âp

�
� ��rmn�t�

��z

�
dt (3)

EjN���j2 �
��
�

p
1=��

Xns
m�1

Xns
n�1

Z
T

0

����Âp

�
� ��rmn�t�

��z

�����
2

dt (4)

The following assumptions are made about the form of Âp and the
frequency content of the image that is formed by the MSIIS.

Assumption II.1: The function Âp is assumed to have a value of
unity within a circle of radius � and zero elsewhere, that is,

Â p�x� �
�
1 if jjxjj � �
0 otherwise

Assumption II.2: The spatial frequency content of the images of
interest is restricted to a circular disk of radius R and � � R.

Let the frequency support of the images be denoted by�. In light
of the above assumptions, it can be seen that the following holds:

Eje���j2 �
�
1

�
�
X
m

X
n

Z
T

0

Âp

�
� ��rmn�t�

��z

�
dt

	
(5)

It was shown that to achieve a level of misclassification probability
less thanpmin, it is sufficient that theWCE, jjejj1, obey the following
inequality [3],

jjejj1 � CB2 (6)

where

jjejj1 � jsup�2�je���j2j1=2 (7)

B is a constant depending on the feature to be identified and C is a
factor dependent on the probability ofmisclassificationpmin. Given a
feature map for classification of the image, the probability of
misclassification can be guaranteed to be less than pmin if [3]�

1

�
�
X
m

X
n

Z
T

0

Âp

�
� ��rmn�t�

��z

�
dt

	
� CB2 (8)

i.e.,

X
m

X
n

Z
T

0

Âp

�
� ��rmn�t�

��z

�
dt � 1

�CB2
(9)

Denote 1=�CB2 by ��. From hereon in this paper, that the

parameter �� is known shall be assumed. In Fig. 1, the relationship
between the spacecraft positions is shown and the frequency
coverage of the constellation in the spatial frequency plane is shown.
Note that the constellation of spacecraft moving in the physical plane
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results in an associated constellation of coverage disks moving in the
spatial frequency plane. The coverage disks are centered at the set of
scaled relative distances corresponding to the constellation of
spacecraft, that is, if the positions of the spacecraft are given by
fr1�t�; . . . ; rns�t�g, then the scaled spacecraft relative positions
are given by f	�rmn�t�
=��z: �rmn�t� � rm � rn;m� 1; . . . ; ns; n�
1; . . . ; nsg and a coverage disk (disk of radius �) is centered at each of
these relative positions. The coverage disk located at the relative
position 	�rmn�t�
=��z is denoted as the �m; n�th coverage disk. The
problem of designing a minimum-fuel maneuver for an MSIIS, such
that the imaging constraints are satisfied can then be posed as
follows:

Problem 1: Minimum-fuel maneuver for MSIIS (MF-MSIIS):

min
r1 ;...;rns

Z
Tmax

0

uTu subject to

Xns
m�1

Xns
n�1

Z
T

0

Âp

�
� ��rmn�t�

��z

�
dt � ��; 8 � 2 �

ri�t� � 	r1i �t�; r2i �t�
; r1i �t�; r2i �t� 2 L2	0; T

_ri � f�ri� � Bui; u� 	u1; . . . ; uns


T

Note that the above problem involves an uncountable number of
integral constraints on the trajectories of the constituent spacecraft. In
the following section, a painting problem is posed and its connection
to the MF-MSIIS problem is examined.

III. Image Formation as a Painting Problem:
Relationship to the Traveling Salesman Problem

In this section, the process of minimum-fuel image formation is
posed as a painting problem. Specifically, it is shown that the process
of image formation by an MSIIS is analogous to the painting of a
large disk by smaller paintbrushes or “coverage disks.” All the
parameters defined in the previous section are unchanged in this
section. Also, the following definitions hold:

Definition III.1: The “amount of paint” laid down by coverage disk
�m; n� at spatial frequency � is defined as

�mn��� �
Z

T

0

Âp

�
� ��rmn

��z

�
dt (10)

The following simplifying assumption is made:
Assumption III.1: The spacecraft are arranged symmetrically. The

reasons for considering symmetric constellation are twofold. The
first reason is that it simplifies the constellation design problem to
that of designing the trajectories of a single spacecraft. The second
reason is that though there is repeating coverage of the u–v plane, it
can be optimized such that only minimum amount of coverage is
achieved at every frequency point.

In Fig. 2, the situation with four and seven spacecraft arranged
symmetrically is shown. In the first case there are two rings of
coverage disks, and the discs in the inner ring are twice covered. The
inner ring is due to the relative trajectories of each spacecraft with
respect to its adjacent spacecraft, and the outer ring is due to the
relative trajectories of each spacecraft with respect to its opposite
one. In the second case there are three rings and twice the number of
discs per spacecraft in each. The fact that there is a multiple coverage
in the u–v plane, given the symmetry of the configuration it is taken
into account by a constant� that account for multiple coverage of the
same point in the u–v plane. The ratio of the radii of the two rings is
fixed and determined by the geometry of the regular polygon along
whose vertices the spacecraft are arranged. In the case of four

spacecraft, it is
���
2

p
. Similarly, for a higher number of spacecraft,

there are a higher number of rings whose radii are in fixed ratios.
Then, the amount of paint laid down by the various coverage disks
can be partitioned as that being laid down by the different rings. It is
shown for the case of four or five spacecraft, the problem is then
easily generalized to higher number of spacecraft.

In the case of four orfive spacecraft, there are two concentric rings.
Denote the inner ring as ring I and the outer ring as ring II. Let�I and
�II be the paint distribution laid down by ring I and ring II,
respectively, that is, the total paint laid down by the coverage disks in
the respective rings. The painting distributions �I and �II are not
independent of each other. This can be seen from the constraint in the
problem MF-MSIIS. Thus, �I � F��II�, where F is some fixed
operator. Note that �I is a non-negative function and F is a non-
negative operator. This operator F depends on the number of
spacecraft. The functional form of F is found for four and five
spacecraftMSIIS [3,4]. Any set of spacecraft trajectories lays down a
particular paint distribution ��I;�II�. The trajectory constraints
in MF-MSIIS are satisfied if the following “painting constraint”
holds:

�I��� ��II��� � ��; 8 � 2 �

The central issue in the imaging problem is the coverage/painting
constraint. As mentioned before, the imaging problem amounts to
painting the resolution disk without leaving any gaps while
maintaining a minimum thickness of paint. Thus, it follows that the
paintbrushes or the coverage disks need to pass over every point in
the resolution disk. This problem is kindred to the “covering
salesman” or the coverage problem in robotic path planning [16,17].
In the aforementioned problem, the salesman or the agent must pass
over all the points in the target environment. Note that in the case of
imaging, the role of the salesman is played by the resolution disks or
the paintbrushes while that of the target environment is played by the
resolution disk. The coverage salesman problem is a variant of the
“traveling salesman” problem and is known to be nondeterministic
polynomial hard [16,17], that is, heuristics or approximate solutions
have to be used while looking for the solution of these problems.
Another perspective on this optimization problem can be obtained
through the necessary conditions corresponding to the minimum-
fuel optimization problem 1. The necessary conditions for the
minimum-fuel problem can be formulated using Pontryagin’s
minimum principle and the Kuhn-Tucker theorem for optimization
with inequality constraints. Problem 1 can be rewritten as follows:
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min
u1 ;...;uns

Z
Tmax

0

uTu dt; subject to _X � f�X ; u�; q�T� � ��

(11)

where

X � x
q

� �
(12)

x� 	x1; . . . ; xns 
T is the state of theMSIIS, including the position and
velocity of every spacecraft in the system, q is defined as

q� 	q1; . . . ; qK 
T ; _qk �Ak
p�x� �

Xns
n�1

Xns
q�1

Âp	�k � �rm � rn�


(13)

and u is a vector containing the control acting on each individual
spacecraft.

The necessary conditions for the optimal solution of this problem
are found to be

_�1 �� @fT

@x
�1 �

@Ap�x�T
@x

�2 (14)

_�2 � 0 (15)

u�� 1

2
BT�1 (16)

_x� f�x� � Bu (17)

_q k �Ak
p�x� (18)

where �1 is the vector of 6ns multipliers associated with x, and �2 is
the vector of K multipliers associated with q.

The boundary conditions of the problem are given as follows:

x�0� � xo; q�0� � 0 (19)

�1�T� � 0; �2�T� � �� (20)

where

�k � 0; if 	 �� � qk�T�
< 0; �k > 0; if 	 �� � qk�T�
 � 0

(21)

Recall that the variablesqk correspond to the paint laid down at the
frequency point �k and� define the multipliers associated with these
paint variables. As the number of these frequency points increases
(note that there are an uncountable number of frequency points in the
exact problem), the dimension of � becomes very large. Thus,
shooting methods for the solution of this problem are quite
intractable because of the high dimensionality of the costate
corresponding to the paint variables [18]. Hence, there is a need to
obtain a solution that satisfies the paint constraints, that is, ensures

that qk >� at the end of themaneuver. This corresponds to finding a
trajectory that passes “close” to every one of the frequency points �k,
that is, the equivalent of finding a path that passes through all the
cities in the traveling salesman problem. This is not a coincidence as
the role of the cities in the traveling salesman problem is played by
the frequency points in the optimal control formulation. Hence, there
is a need to find classes of trajectories in the frequency plane that can
satisfy the paint constraints.

Fortunately, the class of spiral trajectories, with a spiraling rate
that is small enough, can satisfy this constraint quite trivially [i.e.,

qk�T�>�]. Hence, the design of minimum-fuel trajectories with
respect to spiral maneuvers is considered in the next section and the

corresponding optimization problem obtained, which is called the
minimum-fuel pantograph.

IV. Minimum-Fuel Spiral Maneuvers

In this section the problem of finding the minimum-fuel spiral
maneuver that satisfies the imaging constraints is posed. For
simplicity, two ring constellations are considered, that is, the case of
four or five spacecraft. The treatment can easily be generalized to
higher number of spacecraft. The spiral maneuvers are specifiedwith
respect to the outer ring (ring II).

Assumption IV.1: The spirals start close to the center and spiral out.
Let k�r� denote the rate atwhich ring II spirals out and let!�r� denote
the angular velocity of the spiral. Let vr and vt denote the radial and
transverse velocity of the constellation, respectively. Note that the
independent variable in this case can be the radius because it is
monotonically increasing. Also, due to the symmetry of the
configuration, the configuration of the constellation can be specified
by vr and vt of any one of the spacecraft. Let the dynamics of the
spacecraft be governed by the following dynamical equations:

_vr � fr�r; vr; vt� � ar (22)

_vt � ft�r; vr; vt� � at (23)

This is motivated by the free-space case, that is, perturbation free
equations ofmotion. In the case of free-space note that fr � v2t =r and
ft ��vtvr=r. However, different dynamical regimes will require
different dynamical formulations in general. Let the desired paint

thickness be ��. In the following, the painting/imaging constraints
and the dynamical constraints in terms of the variables vr, vt and r are
obtained. In the following it is assumed that the final radius of ring II,
Rf, is given. Note that R � Rf � �R, where R is the radius of the
resolution disk.

1) Painting/Imaging Constraints: Let the radius of the resolution
disk be denoted by R. Let the ratio of the radii of the inner ring to the
outer ring be denoted by�,� > 1. Let the number of disks in the outer
ring be denoted by M. Let the number of disks in the inner ring be
denoted by �M, �� 1 or �� 2, depending on whether the number
of spacecraft is odd or even. Let the thickness of paint laid down by
the outer ring II at the point �r; �� be denoted by�II�r; ��. Similarly,
let the paint laid down by inner ring I be denoted by �I�r; ��. Let
A�r1; r2� represent the annular region between r1 and r2. Let � denote
the radius of the coverage disks, where it is assumed that � � R.

Definition IV.1: A paint distribution ��I;�II� satisfies the full-
paint constraint (FPC) if

�II�r; �� ��I�r; �� � ��; 8 �r; �� 2 �

where �� represents the minimum desired thickness of the coat of
paint and � represents the resolution disk.

Definition IV.2: The time spent by ring II in the annular region
A�r1; r2� is equal to the time spent by ring I in the region
A	�r1=��; �r2=��
.

Definition IV.3: It is assumed that the total volume of paint laid
down by ring II in the region A�r1; r2� is given by the expression
��2MTII�r1; r2�C, where TII�r1; r2� is the time taken by ring II to
expand from r1 to r2. Similarly, the volume of paint laid down by
ring I is given by ��2�MTI�r1; r2�C.

Under the above assumptions, the painting constraints can be
obtained as the following (details are given in previous literature
[4,5]):

��
1

vr�r�
� 1

vr�r��
� r ��

�C
; 8 r 2 	0; Rf
 (24)

dr

d�
� rvr�r�

vt�r�
� K (25)

Constraint on Eq. (24) is called the full painting constraint, and
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defines the requirement of a given amount of light collection on every
region of u–v plane coverage. Constraint on Eq. (25), defines a
constraint in the maximum expansion rate of the spiral to prevent
leaving gaps in the coverage of the u–v plane.

2) Dynamical Constraints: If the independent variable is changed
from time to the radius r, then the dynamical constraints can be
written as follows:

v0r �
fr�r; vr; vt�

vr
� �ar (26)

v0t �
ft�r; vr; vt�

vr
� �at (27)

where �ar � �ar=vr� and �at � �at=vr� and all the derivatives have
been changed from time derivatives to derivatives with respect to the
radius.

3) Time Constraint: Assuming that a maximum time for the
imaging maneuver Tmax has been defined, the time constraint can be
written as follows: Z

Rf

0

dr

vr�r�
� Tmax (28)

4) Fuel Usage: The fuel usage is given by the following
expression, Z

Tmax

0

����������������
a2
r � a2

t

p
dt (29)

Changing the independent variable to r from t, the fuel usage for
the constellation is obtained as follows:Z

Rf

0

����������������
�a2
r � �a2

t

p
dr (30)

5) Minimum-Fuel Problem: With the above developments, the
following proposition holds:

Proposition IV.1: Let assumptions IV.1–IV.3 hold. The solution
of the generalized minimum-fuel panthograpic problem, for any
number of spacecraft is given by the solution of the following
problem:

min
�ar; �at

Z
Rf

0

����������������
�a2
r � �a2

t

p
dr (31)

subject to

�1�1

1

vr��1r�ns
� � �2�2

1

vr��2r�ns
� � . . . � r ��

�C
; 8 r 2 	0; Rf
 (32)

rvr�r�
vt�r�

� K (33)

v0r �
fr�r; vr; vt�

vr
� �ar (34)

v0t �
ft�r; vr; vt�

vr
� �at (35)

Z
Rf

0

dr

vr�r�
� Tmax (36)

Thus, in this section the minimum-fuel problem for design of the
trajectories of the constituent spacecraft of an MSIIS has been
formulated. However, the optimization problem has bilinear
constraints and thus is not a convex problem. However, if the
spiraling rate, k�r� � dr=d�, of the spirals or the angular velocity
!�r� � d�=dt of the spiral, is fixed then the design of the optimal fuel

trajectory can be shown to be a convex problem, under certain
assumptions. This result is proved in the next section and is applied to
the cases of deep space and linear dynamics.

V. The Minimum-Fuel Pantograph

As mentioned in the previous section, the minimum-fuel problem
posed in the previous section contains bilinear constraints and as
such is not a convex problem. In this section, the minimum-fuel
optimization problems are posed, given that the spiraling rate k�r� is
fixed or the angular rate !�r� is fixed. It shall be further shown that
the two optimization problems so defined are convex, under certain
assumptions on the dynamics of the system. First, the kinematic and
the geometric design problems are defined, denoted as minimum-
fuel kinematic design (MFKD) and minimum-fuel geometric design
(MFGD), respectively.

Definition V.1: The optimization problem obtained by fixing the
spiraling rate k�r�, that is, the ratio �rvr=vt��r� in the minimum-fuel
optimization problem (31) is defined to be the MFKD.

Definition V.2: The optimization problem obtained by fixing the
angular rate !�r�, that is, the transverse velocity vt�r�, in the
minimum-fuel optimization problem, (31), is defined to be the
MFGD.

The reason the problem is called a minimum-fuel pantograph is
due to the pantographic imaging constraints in Eq. (32) [4,5]. This
type of constraint relates a variable at a given positionwith its value at
a different position. This type of constraint is equivalent to the time-
delay constraint in the time domain. Note that either of the above
optimization problems can be posed solely with respect to the radial
velocity v�r�. In the following, two important classes of dynamics are
considered, namely free space and dynamics of spacecraft in near-
Earth orbits (i.e., the Clohessy–Wiltshire equations can be used to
describe the relative position dynamics), and it is shown that the
MFGD and MFKD are convex in both these cases.

Proposition V.1: First, consider the case of free space. TheMFGD
and MFKD are convex in free space.

Proof: The result is proved for the case of MFKD. The proof is
very similar for the MFGD case.

fr�r; vr; vt� �
v2t
r

(37)

ft�r; vr; vt� � � vrvt
r

(38)

Let 	vr�r�=vt�r�
 � k�r�. Then frfr; vr; 	k�r�=vr�r�
g � 	vr=rk2�r�
,
which is linear and hence, convex in vr. Similarly,
ftfr; vr; 	k�r�=vr
g � 	�vr=rk�r�
 is also linear in vr and hence, is
convex in vr. Thus, it follows that the MFKD is convex.

Now, consider the case of operation in near-Earth orbits. It is
assumed that the plane of the circular orbit about which the
perturbations of the spacecraft are considered is perpendicular to the
target direction and thus, there is interest only in the in-plane motion
of the satellites (this is a reasonable assumption for a target that is
very far away from Earth). The motion of any satellite (due to
symmetry, they will be staggered uniformly in phase) in the
constellation can then be described in cylindrical coordinates (with
respect to the circular orbit) [19] as follows:

�r � 2nr0 �� � 3n2r� ar � 0 (39)

r0 ��� 2n _r� at � 0 (40)

�z� n2z� 0 (41)

where r0 represents the radius of the circular orbit and n represents
the orbital mean motion [19]. Note that for the minimum-fuel
problem as formulated in the previous section,

vr � _r (42)
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vt � r _� (43)

However, the dynamical constraints of the minimum-fuel problem

are reframed in terms of vr and!� _� in order to ensure the convexity
of the resulting minimum-fuel problem. In Eq. (39), changing the
independent variable to r instead of time and expressing the
equations in terms of vr and ! results in the following equations for
the in-plane motion of the satellites:

v0r � 2nr0
!

vr
� 3n2r

vr
� �ar � 0 (44)

r0!
0 � 2n� �at � 0 (45)

The out of plane motions of the spacecraft are not considered due to
the reasons mentioned above. Now, consider the MFKD, that is,
�dr=d�� � const: Noting that �dr=d�� � �vr=!� it follows that the
above equations are modified to

v0r �
2nr0
k�r� �

3n2r

vr
� �ar � 0 (46)

r0

�
k�r�v0�r� � k0�r�v�r�

k2�r�
�
� 2n� �at � 0 (47)

Note that the above equations are both convex in vr. Because all the
other constraints are the same for the minimum-fuel problem as
formulated in the previous section, it follows that the MFKD is
convex for operation in near-Earth orbits. A similar result can also be
proved for the MFGD. Thus, the above development can be
presented as the following result:

Proposition V.2: The MFGD and MFKD are convex for near-
Earth orbits, that is, if the governing equations of motion for the
relative position dynamics of the satellite constellation are the
Clohessy–Wiltshire equations.

Thus, in this section, it was shown that the conditions hold for the
important cases of free-space and near-Earth operation in perturbed
circular orbits. Though the case of two ring systems was considered,
that is, the case of four or five spacecraft, the results are easily
generalized to ns spacecraft. However, note that the general solution
to the minimum-fuel problem is more difficult to obtain due to the
bilinear nature of the pantographic constraints in terms of vt and vr. A
way to obtain a solution to the above problem is to solve a sequence
ofMFGDs andMFKDs recursively, that is, start with an initial value
of the spiraling rate, k0�r�, then design the optimal v1t with respect to
the given spiraling rate by solving an MFKD with respect to k0�r�.
On obtaining v1t , the optimal k1�r� can be obtained by solving the
correspondingMFGDand so on to generate the spiraling and angular
rates 	kn�r�; vnt �r�
 until an equilibrium is reached. However, it is
difficult to guarantee that the equilibrium is aminimumbecause there
can be millions of such equilibria for optimization problems with
bilinear constraints. However, many times, the interest is to obtain
the best velocity profile with respect to a given spiraling rate, that is,
solve anMFKDwith respect to the given rate. The results so far show
that such a problemcan be conveniently solved, at least for the case of
deep space and near-Earth operations, because it is a convex
problem.

VI. Application: Fuel Optimal Spiral Trajectories
in Deep Space

In this section, the design of fuel optimal spiral trajectories in deep
space is studied. Figure 3 shows the configuration of the type of
symmetrical maneuver that was used for these examples. This
algorithm can also be extended to nonsymmetrical configurations.

The dynamics of a satellite describing a spiral in deep space can be
written in the form:

�a r�r� �
ar�r�
vr�r�

�
�
dvr
dr

� vt
k

�
(48)

�a t�r� �
at�r�
vr�r�

�
�
dvt
dr

� vr
k

�
(49)

To analyze the solutions to the fuel optimal problem, the
optimization problem stated in Eqs. (31–36) is solved, for large times
of maneuver (i.e., unconstrained or weakly constrained cases) and
four satellites. The numerical solution was obtained for two cases.
First, a suboptimal solution was obtained using k constant, with vr as
the optimization variable. In the second approach, an optimal
solution was obtained with both vr and vt both as optimization
variables.

Solutions were found for different values of the parameters:
number of intervals, number of satellites and mission quality
constraint. It was found in all the cases that the optimal solution
corresponds to the loosest spiral, i.e., the spiral with the maximum
possible spiraling rate.

Since the cost function is monotonically decreasing for any k � 0
it is expected that the value of k, whichminimizes J, is attained at the
constraint boundary; numerical solutions to the problem seem to
corroborate these observations. Figure 4a and 4b compare the
solutions to the suboptimal problem with fixed radial rate (i.e., k
fixed) and the true optimal (i.e., vr and vt as optimization variables)
problem. The solution on the left shows the velocities of a trajectory
for a case where constraints are active, it clearly displays the
discontinuity of the solution caused by the character of the constraint
that acts only on part of the total radial distance. The plot on the right
side shows the solution obtained for a case where the time of
maneuver is higher and the constraints are not active. In both cases
the value of k lays at the constraint boundary. The small difference in
the solution may be attributed to the discretization of the problem
because in the optimal expansion rate case the solution converges to a
value of k for every r, that is close to the limit value up to the tolerance
of the solving algorithm.

Hence, in accordance with the observations above, the following
approximation is made:

Approximation 1: For a fixed time, the optimal fuel maneuver is
obtained when k is the maximum value allowed by the radial
expansion limit, and the problem is thus reduced to the MFKD
problem.

The dynamics of the system can then be written as

�a r�r� �
ar�r�
vr�r�

�
�
dvr
dr

� vt
k

�
(50)

�a t�r� �
at�r�
vr�r�

�
�
r

k

dvr
dr

� 2
vr
k

�
(51)

and, for the cases under consideration, because the rate of change of
velocity with respect to the radial distance is small, the contribution
of dvr=dr can be assumed to be negligible. Figure 5 shows the small
difference in the calculation of the acceleration when including the
term. In the total cost function the contributions of these terms can be
neglected and under the above approximations, Eq. (31) can be
written as

Fig. 3 Configuration of a spiral maneuver and its coverage in the u–v
plane. Notice the three coverage rings in this case.
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J �
Z

Rmax

0

vr�r�
k2

������������������
r2 � 4k2

p
dr (52)

A. Indirect Method Solution for the Constrained Fuel Optimal

Problem with n Spacecraft

To obtain a solution to the minimum-fuel spiral maneuver
problem, the problem is discretized as follows:

�i ���ri�; i� 1; . . . ; ns (53)

��r� � 1

vr��mr�
(54)

where m is the number of rings in the configuration, namely m� 2
for 4 and 5 spacecrafts,m� 3 for 6 and 7, and so on. The constants�i

(see Sec. IV) are proportionality constants for each ring, (e.g.,

�2 �
���
2

p
for 4 spacecraft) and �M is the value for the smallest ring in

a given configuration. Following this discretization, the constraints
can be written as linear inequality constraints Eqs. (57) and (63), as
described below, and the numerical solution is formed using the
sequential quadratic programming algorithm, fmincon and SNOPT
in MATLAB. The constraints are

1) Full-Paint Constraint: The FPC, defined in the previous
sections [refer to Eqs. (24) and (32)], can be written for the general
case with n spacecraft and m rings as [6,7]:

G�r�K�r� � �2�2G��2r�K��2r� � . . .� �m�mG��mr�K��mr�
� r ��� (55)

where
��� is a constant proportional to the image quality. These

constraints can be compacted into the following constraint:

��r� � �2�2���2r� � . . .� �m�m���mr�
� r ���; r 2 �Rmin; Rmax� (56)

Thus, when the problem is discretized, the FPC reduces to the
following linear constraint:

� ���r� � r ��� (57)

where � is a matrix given by

��
Xm
1

�i�iW��i=�m� (58)

Here �1 � 1, �1 � 1,m is the number of rings, and the matrixW� is
the mapping in discrete space of the continuous function

F �	��r�
 ����r� (59)

which has the form

���r� �W� ���r� (60)

�

1 0 . . . 0 0 . . . 0 0

0 . . . 0 p 1 � p 0 . . . 0

. . .

0 . . . 0 0 0 0 0 1

0 0 0 0 0 0 0 0

. . .

0 0 0 0 0 0 0 0

2
666666664

3
777777775

��ri�
��ri�1�

:
:
:

��rns�1�
��rns�

2
666666664

3
777777775
(61)

where p is a proportionality constant that calculates the value of� at
the point �r, as the linear interpolant of ��ri�1� and ��ri�. As a
particular case, W1 is the identity matrix.

2) Time Constraint: The time constraint is given by the integral in
Eq. (36): Z

Rf

0

dr

vr�r�
� Tmax (62)
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which after discretization, using a trapezoidal integration scheme,
can be written as the vector product:

V �� � Tmax (63)

where V � �M	r	0:5 1 1 . . . 1 0:5
, and 	r is the distance between
two contiguous discrete radial points.

B. Results

The minimum-fuel cost for MSIIS comprising 4 to 14 spacecraft,
for different maximum times of maneuver, is displayed in Table 1,
under the following imaging mission parameters:

1) R� 100 kilometers
2) �� 0:02
3) C� 2:5
4) B� 2 � 10�4

5) �� 1000 photons=s
The imaging mission is to detect the bandedness of a Jupiter-sized

planet at a distance of 25 light years. 50 � 50 pixel images of the
planet are considered [5]. From the results, insight into the cost of
MSIIS missions can be obtained, the order of magnitude of the
required accelerations, and the general behavior of a maneuver
covering the frequency plane. The results show that as the number of
satellites is increased, a shorter time of maneuver is feasible, and the
total fuel cost of an imaging maneuver is reduced. The maximum
thrust required (Tmax) is calculated per 100 kgmass of the constituent
spacecraft and the fuel consumption is based on a specific impulse of
7000 s for an electrical propulsion system, that has beenmentioned in
some publications [20,21].

Some plots of the obtained solutions are shown in Figs. 6–9. The
plots show the time history of the acceleration and the values of the
corresponding velocities (refer to Fig. 3). The lower plot in these
figures describes the fulfillment of the constraint, displaying the ratio
of the time of light collection with respect to its requirement. The

space trajectories of each of the maneuvers only depend on the value
of k (fixed for a given number of spacecraft). Figure 3 shows the
maneuver for 6 spacecraft. In Fig. 6 the results for a nonconstrained
case are shown, that is, a case inwhich the FPC is not active. The time
of maneuver in this case is high. As the time of maneuver is reduced
to the minimum feasible time, the optimal velocities increase and the
FPC becomes active. Figure 7–9 show the solutions obtained for
constrained low-time cases. In Fig. 7, a near-minimum time

Table 1 Cost for different number of satellite (ns) and different time of

maneuver (time)

ns Time
[hours]

�V [m=s] kg fuel
(Isp� 7000 s)

Tmax 	mN
=100 kg

4 80 339 0.49 344
4 60 947 1.38 438
4 46 1337 1.94 2367
5 80 104 0.15 3574
6 60 207 0.303 487
6 30 1138 1.62 2846
7 80 27 0.039 19
7 30 175 0.225 812
8 80 209 0.304 69
8 30 556 0.81 495
8 24 696 1.01 774
8 20 836 1.22 1128
9 80 16 0.023 28
9 30 122 0.178 406
9 24 171 0.249 826
10 80 135 0.198 45
10 30 362 0.53 327
10 24 510 0.744 453
10 20 623 0.907 3009
10 12 971 1.416 7463
11 30 82 0.120 75
11 24 104 0.152 139
12 30 289 0.421 232
12 24 361 0.527 363
12 12 770 1.124 1749
13 30 73 0.107 67
13 24 91 0.134 104
13 18 122 0.178 189
13 12 212 0.310 2620
14 30 209 0.306 203
14 24 287 0.419 327
14 12 576 0.839 1100
14 8 862 1.258 2949
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Fig. 6 State history for four spacecraft, 150 h FPC not active. Lower

figure shows the fulfillment of FPC.
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maneuver of 45 h is shown for a 10 spacecraft system, and in Figs. 8
and 9, maneuvers are shown for 10 spacecraft in 12 h and for 12
satellites in 8 h, respectively.

From the above mentioned results the actual cost of the imaging
maneuver is calculated and the maximum acceleration required for
such high resolution imaging missions. Maneuvers achievable in
reasonable times are found to require reasonable fuel to total mass
ratio. As an example, for a hundred of such maneuvers, using 8
spacecraft in 24 h missions, a spacecraft would require a ratio of fuel
mass to total mass of

Mf

Mt

� 1 � e��V=I�g � 0:63 (64)

Figure 10 shows the results for the fuel to total mass ratio for 100
maneuvers, as a function of the number of spacecraft and for different
times of maneuver. These estimated values are quite reasonable for
such scientific missions because the particular imaging mission
considered requires a very high level of light collection due to the
feature selected as the criterion for classification [7]. Other missions
would require much lower levels that would lead to less stringent
time and fuel requirements. Maneuvers lasting 24 h comprising 13
spacecraft, require amaximum thrust of 100mN (per 100 kg ofmass)
and a total �V of the order of 0:09 km=s. Twenty–four hour
maneuvers with fewer than nine satellites show amaximum required
thrust of the order of 1 N (per 100 kg of total mass). Such high
impulses are, however, practically infeasible using current electrical
propulsion technologies due to the power supply constraints.

It was found that the accelerations required (and consequently, the
required power), are reduced using more spacecraft in the maneuver
and/or increasing the time of the maneuver. It is also found that the
total cost of maneuver drops significantly when increasing the time
of maneuver.

The fuel consumption for these maneuvers might be reduced with
the development of more efficient electric propulsion systems with
higher specific impulses and propulsion capacities like some that
have been proposed for the exploration of outer solar planets [20,22].
Thus, the realization of such high resolution imaging systems would
depend on a compromise between the number of spacecraft, time of
maneuver, and the development of the appropriate propulsion
technologies.

VII. Conclusions

In this paper, it was shown that the minimum-fuel maneuver for a
multispacecraft interferometric imaging system can be posed as a
painting problem and it was argued that the optimization problem so
obtained is computationally intractable because of its similarity to the
traveling salesman problem and through an optimal control
argument. Thus, in this paper, minimum-fuel spiral maneuvers were
considered because spirals form a class of trajectories that satisfy the
coverage constraints. The minimum-fuel optimization problem is
nonconvex but it was shown that the kinematic design problem,
obtained by fixing the spiraling rate in the minimum-fuel problem,
and the geometric design problem, obtained byfixing the angular rate
in the minimum-fuel problem, are both convex.

These results were applied to obtain fuel optimal solutions for
MSIIS spiral maneuvers in deep space. The minimum-fuel spiral
maneuvers for a specific deep space imaging mission was obtained.
From the results, it can be concluded that such imaging maneuvers
might be feasible provided that there is a compromise between the
time of maneuver, the number of spacecraft, and the development of
the current propulsion technologies.

A concern is the low level of acceleration that is required to
maintain the minimum-fuel orbits. Thus, a high accuracy low
impulse bit control is required. It is a concern that the order of the
minimum accelerations is quite low, and current technologies under
development providing low thrust might be important for the control
of such maneuvers. A problem that should be addressed in future
research is the study of the effect of inaccuracies in the imaging
maneuver on the coverage of the frequency plane and consequently,
the image quality. Also, the results need to be extended to other
dynamical regimes such as near-Earth orbits and halo orbits.
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