
1

Dynamic Feedback Linearization-based
Belief Stabilization for

Nonholonomic Motion Planning in Belief Space
Ali-akbar Agha-mohammadi, Suman Chakravorty, Nancy M. Amato

{aliagha,schakrav,amato}@tamu.edu

Technical Report TR12-004
Parasol Lab.

Department of Computer Science and Engineering
Texas A&M University

March 04, 2012

Abstract

In roadmap-based methods, such as the Probabilistic Roadmap Method (PRM) in deterministic environments or the Feedback-
based Information RoadMap (FIRM) in partially observable probabilistic environments, a stabilizing controller is needed to
guarantee node reachability in state or belief space. In belief space, it has been shown that the belief-node reachability can
be achieved using stationary Linear Quadratic Gaussian (LQG) controllers, for linearly controllable systems. However, for
nonholonomic systems such as unicycle model, belief reachability is a challenge. In this paper we construct a roadmap in
information space, where the local planners in partially-observable space are constructed by utilizing a Kalman filter as an estimator
along with a Dynamic Feedback Linearization-based (DFL-based) controller as the belief controller. As a consequence the task of
belief stabilizing to the pre-defined nodes in the belief space is accomplished even for nonholonomic systems. Therefore, a query-
independent roadmap is generated in belief space that preserves the “principle of optimality”, required in dynamic programming
solvers. while taking obstacles into account, this method serves as an offline POMDP solver for motion planning in belief space.
Experimental results shows the efficiency of both individual local planners and the overall planner over information graph for a
nonholonomic model.

Agha-mohammadi and Amato are with the Dept. of Computer Science and Engineering and Chakravorty is with the Dept. of Aerospace, Texas A&M
University, TX 77843, USA. Emails: aliagha@tamu.edu, chakrav@neo.tamu.edu, and amato@tamu.edu

I. INTRODUCTION

This work aims in providing a sampling-based feedback solution for the problem of nonholonomic motion planning in belief
space, i.e., under motion and sensing unertainties.

Nonholonomic motion planning (NMP) deals with planning open-loop or feedback (closed-loop) plans for moving an object
that is subject to nonholonomic constraints. Unicycle model is an important example of nonholonomic systems, which can
model a large variety of systems ranging from differential drive and synchro drive single-body robots [1], to steerable needles
in surgery [2]. One of the challenges in nonholonomic motion planning is stabilizing the system to a point. Thus, if we consider
two basic motion tasks: point-to-point motion, which deals with driving a moving object from a given state/configuration to
another given state/configuration, and trajectory following, that deals with following a trajectory in state/configuration space,
then, in contrast to the holonomic case, the point-to-point motion in nonholonomic systems is a much more difficult task than
trajectory tracking [3]. As mentioned, the main challenge is the state stabilization to the target node.

Motion planning under uncertainty (MPUU) is an instance of sequential decision making problem under uncertainty.
Considering the uncertainty in object’s motion and uncertainty in sensory readings, the state of system is not fully observable,
and thus, is not available for decision making. In such a situation, a state estimation module can provide a probability distribution
over the possible states of the system, and therefore decision making is performed in the space of these distributions, the so
called information space (or belief space). Planning in the belief space in its most general form is formulated as a Partially
Observable Markov Decision Process (POMDP) problem[4], [5]. However, only a very small class of POMDP problems can
be solved exactly. In particular, planning, (i.e., solving POMDPs,) in continuous state, control, and observation spaces, where
our problem resides, is a formidable challenge.

Sampling-based motion planning methods have shown great success in dealing with many motion planning problems in
complex environments and are divided into two main classes: Roadmap-based (graph-based) methods such as the Probabilistic
Roadmap Method (PRM) and its variants[6], [7] and tree-based methods such as methods in [8], [9]. In dealing with MPUU,
roadmap-based methods have a desirable feature: since the solution of POMDP is a feedback over whole belief space, it
does not depend on the initial belief and from any given belief it produces a best action. This property matches well with
roadmap-based methods that are multi query so that a feedback can be defined on the graph, which produces the best action
at each graph node. On the other hand, tree-based methods are usually query-dependent and rooted in the start point of the
query.

Similar to motion planning in state space, in belief space motion planning, the basic motion tasks can be defined as: point-
to-point motion, which deals with driving the belief of the moving object from a given belief to another given belief, and
trajectory following, which deals with following a trajectory in belief space. Both these tasks are even more challenging in
belief space than in state space. To construct a query-independent roadmap in belief space, point-to-point motion in belief space
is required. A number of pioneering methods have been proposed in [10], [11], [12] for applying sampling-based ideas for
motion planning in belief space. However, one challenge they all face is they do not support point-to-point motion functionality
in belief space. Thus, they do not preserve the “optimal substructure property”[13] needed in the solving DP equation, or in
Dijkstra’s algorithm[14]. Therefore, the roadmap construction depends on the start point of the submitted query and hence a
new roadmap has to be constructed for every query. Prentice et al.[10] and Huynh et al.[11] reuse a significant portion of the
computation by using covariance factorization techniques to reduce the computation burden imposed by the query dependence.

In fully-observable environments, Generalized PRM [15] perform point-to-point motion under motion uncertainty. In partially
observable environments, under motion and sensing uncertainty, the Feedback-based Information RoadMap (FIRM) [16], [17]
utilizes feedback controllers for the purpose of belief stabilization, and hence embeds the point-to-point motion behaviour in
belief space. As a consequence, the generated roadmap in belief space is query-independent and only needs to be constructed
once. Also, the principle of optimality1 is preserved on FIRM, and the connection between its solution and the original POMDP
can be established rigorously [16], [17]. It is also shown to be probabilistically complete [18]. FIRM is an abstract framework
for planning in belief space, and a Linear Quadratic Gaussian-based (LQG-based) instantiation of FIRM is reported in [16],
[17]. The main shortcoming of the LQG-based FIRM is that it only works for systems which are linearly controllable about
a fixed node point. This condition excludes nonholonomic systems, which are not stabilizable to a fixed point under linear
controllers.

The main contribution of this work is to present an instantiation of the abstract FIRM framework [16], [17] for nonholonomic
systems using Dynamic Feedback Linearization-based (DFL-based) controllers. The DFL-based control of nonholonomic
models is a well-established technique, but its usage in the belief space along with stationary Kalman filter to construct
a Feedback Information RoadMap (FIRM) is both novel and powerful. This construct leads to a sampling-based feedback
motion planner in belief space for nonholonomic systems, which shows very promising results in conducted experiments. It
builds up on a PRM, where corresponding to each PRM node, we define a unique belief node and design a feedback controller
with partial observations in such a way that the robot’s belief is steered toward a pre-defined point in belief space independent
of starting point. Using the KF as the estimator, and the DFL-based controller as the belief controller, we embed the point-to-
point motion in belief space for nonholonomic systems. Thus, we can construct a roadmap in belief space independent of the

1Principle of optimality represents the fact that the segments of optimal paths are in-themselves optimal. It is also called “optimal substructure property”[13]

2

query, which can be used efficiently for replanning purposes. Also, collision probabilities are seamlessly incorporated in the
construction of planner.

II. CONTROLLABILITY IN NONHOLONOMIC SYSTEMS

An implicit assumption in road-map based methods such as PRM is that on every edge there exists a controller to drive the
robot from the start node of the edge to the end node of the edge or to an ε-neighborhood of the end node, for some small
ε > 0. For a linearly controllable robot, a linear controller can locally track a PRM edge and drive the robot to its endpoint
node. However, for a nonholonomic robot such as a unicycle, the linearized model at any point is not controllable, and hence,
a linear controller cannot stabilize the robot to the PRM nodes. Consider the discrete unicycle model:

xk+1 = f(xk, uk, wk) =

 xk + (Vk + nv)δt cos θk
yk + (Vk + nv)δt sin θk
θk + (ωk + nω)δt

 , (1)

where xk = (xk, yk, θk)T describes the robot state, in which (xk, yk)T is the 2D position of the robot and θk is the heading
angle of the robot, at time step k. The vector uk = (Vk, ωk)T is the control vector consisting of linear velocity Vk and angular
velocity ωk. The motion noise vector is denoted by wk = (nv, nω)T ∼ N (0,Qk). Linearizing this system about the point
(node) v = (xp, yp, θp), one can conclude that the system is linearly controllable iff V p > 0. Thus, in stabilizing the robot to
a PRM node, where the nominal control is zero, up = (V p, ωp)T = (0, 0)T , the system is not linearly controllable. Therefore,
a linear controller cannot stabilize the unicycle to a PRM node. Moreover, based on the necessary condition in Brockett’s
paper [19], even a smooth time-invariant nonlinear control law cannot drive the unicycle to a PRM node, and the stabilizing
controller has to be either discontinuous and/or time-varying.

On roadmaps in belief space, the situation is even more complicated, since the controller has to drive the robot to the
ε-neighborhood of a belief node in belief space. Again, if the linearized system is controllable, using a linear stochastic
controller such as the stationary LQG controller, one can drive the robot belief to the belief node [16], [17]. However, if the
linearized system about the desired point is not controllable, the belief stabilization, if possible, is much more difficult than
state stabilization. Consider a unicycle robot, equipped with sensors measuring the range and bearings from a set of landmarks
in the environment. Linearizing the motion and sensing models of this system for stabilization purposes, although we get a
linearly observable system, but it is not a linearly controllable system. In this paper, we handle this situation by utilizing a
DFL-based controller along with a Kalman filter to steer the system belief toward a pre-defined node in belief space.

III. MOTION PLANNING UNDER UNCERTAINTY

Partially Observable Markov Decision Processes (POMDPs) are the most general formulation for motion planning problem
under motion and sensing uncertainties (In this paper, the environment map is assumed to be known). The solution of the
POMDP problem is an optimal feedback (mapping) π, which maps the information (belief) space to the control space. Let
us denote the state, control and observation at time step k by xk, uk, and zk, respectively, which belong to spaces X, U,
and Z, respectively. The belief in stochastic setting is defined as the pdf the of the system state conditioned on the obtained
information (measurements and controls) up to the k-th time step, i.e., bk = p(xk|z0:k;u0:k−1) and B denotes the belief space,
containing all possible beliefs. It is well known that the POMDP problem can be posed as a belief MDP problem [20], [21],
whose solution π is computed by solving the following Dynamic Programming (DP) equation:

J(b)= min
u
{c(b, u) +

∫
B
p(b′|b, u)J(b′)db′}, (2a)

π(b) = arg min
u
{c(b, u) +

∫
B
p(b′|b, u)J(b′)db′}, (2b)

where J(·) : B→ R is the optimal cost-to-go function, p(b′|b, u) is the belief transition pdf under control u, and c(b, u) is the
one-step cost of taking control u at belief b.

A. FIRM: Feedback-based Information RoadMap

It is well known that the above DP equation is exceedingly difficult to solve since it is defined over an infinite-dimensional
belief space. In this paper, we approach this problem through the FIRM framework [16], [17] and accordingly, transform the
POMDP in (2) into a tractable MDP problem. In this section, we briefly present the abstract FIRM framework and in the
next section we explain how we can make a concrete instantiation of this framework that works for nonholonomic systems. In
FIRM, we aim to sample the belief space and compute the cost-to-go of the sampled beliefs instead of cost-to-go for all beliefs
in the belief space. Then, we show that this sampling in belief space leads to an intractable belief SMDP problem, which can
be arbitrarily well approximated by a tractable FIRM MDP on the FIRM nodes. The main tools in this transformation are
the local feedback planners, which are designed to ensure that at decision making stages, we reach pre-defined FIRM nodes
in belief space. It is worth noting that the power of the local feedback planners resides in the fact that each local planner

3

is a sequence of closed-loop policies (Macro-policies) that can steer the belief toward a predefined belief-node, as opposed
to a macro-action[22], which is a sequence of actions, i.e., a sequence of open-loop policies, which are incapable of belief
stabilization.

Underlying PRM: First a PRM is constructed in the state space, with nodes denoted by V = {vj}nj=1 and edges denoted
by E = {eij}. Note that V includes the goal node to whose vicinity we want to transfer the robot.

FIRM nodes: FIRM nodes are disjoint small sets in the belief space. Corresponding to each PRM node, we design a unique
FIRM node. The FIRM node corresponding to vi is denoted by Bi ⊂ B, whose actual construction depends on the choice of
local controller and is discussed in Section IV. The set of all FIRM nodes is denoted by V = {Bi}ni=1.

Local planners: We use the phrases “local planner” and “local controller” interchangeably in this manuscript. The local
controller µ(·) : B→ U is a feedback controller. The role of (i, j)-th local controller, denoted by µij , is to take a belief from
the FIRM node Bi to the FIRM node Bj . We denote the set of local controllers by M = {µij}. In other words, µij generates
controls based on the belief at each stage, until the belief reaches the region Bj . Thus, the local controller µij has to be a
proper policy with respect to the region Bj over initial region Bi as stated in the following property:

Property 1. (Reachability property of FIRM): For every PRM edge eij , there exists a controller µij , such that the pair
(µij , Bj) is a proper pair over region Bi, i.e., for all b ∈ Bi we have P(Bj |b, µij) = 1, in the absence of obstacles. In other
words, in the obstacle-free environment, the feedback controller µij(·) has to drive the belief state from Bi into a Bj in a
finite time with probability one.

Satisfying reachability property of FIRM: In [16], [17] it is proved that using stationary LQG controllers as local planners
for linearly controllable systems about a fixed point, Property 1 (reachability condition) is satisfied. However, As discussed in
Section II, LQG controllers cannot satisfy Property 1 for nonholonomic systems. In Section IV we propose a way to construct
the DFL-based local controllers and FIRM nodes such that under a mild assumption Property 1 is satisfied for nonholonomic
models such as a unicycle. However, for the sake of completion of theoretical framework we can even make the method
independent of any assumption: we set a deterministic maximum time Tmax, such that if the reachability under the local
controller is not achieved before Tmax, we consider it as failure, i.e., the same as colliding with obstacles. However, in 100%
of the conducted experimental runs, the DFL-based controller is successful in satisfying Property 1.

Roadmap of local controllers: Local planners are parametrized by underlying PRM edges. So, one can view the procedure
as “sampling the local planners”. Similar to roadmap-based methods in which the path is constructed by concatenating edges
of the roadmap, in FIRM the policy is constructed by concatenating local feedback policies. At each FIRM node Bi, the set of
local controllers that can be invoked is Mi = {µij ∈M|∃eij ∈ E}. However, it is worth noting that through this construction
we still perform planning on continuous spaces, and do not discretize any of the state, control, or observation spaces.

Generalizing transition costs and probabilities: We generalize the concept of one-step cost c(b, u) : B × U → R to the
concept of C(b, µ) : B×M→ R. The step cost C(b, µij) represents the cost of invoking local controller µij(·) at belief state
b, i.e.,

C(b, µij) =

T ij∑
t=0

c(bt, µ
ij(bt)|b0 = b), (3)

T ij(b) = inf
t
{t|bt ∈ Bj , b0 = b}, (4)

where T ij is a random stopping time denoting the time at which the belief state enters the region Bj under the controller µij .
Similarly, we generalize the transition probabilities from p(b′|b, u) : B2 × U→ R≥0 to P(·|b, µ) : V× B×M→ [0, 1], where
P(Bj |b, µij) is the transition probability from b to Bj under the local planner µij .

Roadmap level transitions: Now, we transform the transition cost and probabilities to Cg : V×M→ R and Pg : {V, F} ×
V × M → [0, 1] that are defined on the FIRM graph, i.e., over the finite space {V, F}. In other words, Pg(Bj |Bi, µij)
and Pg(F |Bi, µij) are the transition probability from Bi to Bj and F , respectively, under the local planner µij . Similarly,
Cg(Bi, µij) denotes the cost of invoking local planner µij at FIRM node Bi. Accordingly, Jg : {V, F} → R is the cost-to-go
function over the FIRM nodes, where Jg(F) is a user-defined suitably high cost for hitting obstacles. These roadmap level
quantities are defined using the following “piecewise constant approximation”, which is an arbitrarily good approximation for
smooth transition probability and cost functions, and sufficiently small Bi’s:

∀b ∈ Bi,∀i, j

Jg(Bi) := J(bic)≈ J(b),

Cg(Bi, µij) := C(bic, µ
ij)≈ C(b, µij),

Pg(·|Bi, µij) :=P(·|bic, µij)≈P(·|b, µij),
(5)

where bic is a point in Bi, for example, its center, if Bi is a ball. The approximation essentially states that any belief in the
region Bi is represented by bic for the purpose of decision making.

4

FIRM MDP: By this construction of local planners and FIRM nodes, the original POMDP in (2) is reduced (for details see
[17]) to the following finite-state MDP, called the FIRM MDP:

Jg(Bi) = min
µij∈Mi

{Cg(Bi, µij) + Jg(F)Pg(F |Bi, µij)

+ Jg(Bj)Pg(Bj |Bi, µij)}, (6a)

πg(Bi) = arg min
µij∈Mi

{Cg(Bi, µij) + Jg(F)Pg(F |Bi, µij)

+ Jg(Bj)Pg(Bj |Bi, µij)}, (6b)

where, the solution of FIRM MDP πg : V → M is a feedback that returns the optimal local planner (as opposed to optimal
action) for each FIRM node. It is worth noting that the approximation πg(Bi) := π(bic) ≈ π(b) for all b ∈ Bi, results from
the approximations in (5).

B. Overall policy π

The overall feedback π is generated by combining the policy πg on the graph and the local controllers µijs. Suppose at
the k-th time step the active local controller and its corresponding stopping region are given by µk∗ ∈ M and Bk∗ ∈ V. They
remain the same, i.e., µk+1

∗ = µk∗ , and µk∗ keeps generating control signals based on the belief at each time step, until the
belief reaches the corresponding stopping region, Bk∗ , where the higher level decision making is performed over the graph by
πg that chooses the next local controller. For example if the controller µk∗ = µij is chosen, the stopping region is Bk∗ = Bj .
Once the state enters the stopping region Bj , the higher level decision making is performed over graph by πg that chooses
the next local controller, i.e., µk+1

∗ = πg(Bj). Thus, this hybrid policy is stated as follows:

π : B→ U, (7)

uk=π(bk)=

{
µk∗(bk), µk∗ = πg(Bk−1∗), if bk ∈ Bk−1∗
µk∗(bk), µk∗ = µk−1∗ , if bk /∈ Bk−1∗

Initial controller: Given the initial state is b0, if b0 is in one of the FIRM nodes, then we just choose the best local controller
using πg . However, if b0 does not belong to any of the FIRM nodes, we first compute the mean state E[x0] based on b0 and
then connect the E[x0] to the PRM nodes using a set of edges denoted by E(0). Afterwards, for every eij ∈ E(0), we design
a local controller µij , and denote the set of newly added local controllers by M(0). Computing the transition cost C(b0, µ

ij),
and probabilities P(Bj |b0, µij), and P(F |b0, µij), for invoking local controllers µij ∈ M(0) at b0, we choose the best initial
controller µ0

∗ as:

µ0
∗(·) =

arg min

µij∈M(0)
{C(b0, µ

ij) + P(Bj |b0, µij)Jg(Bj)+

P(F |b0, µij)Jg(F)}, if @l, b0 ∈ Bl

πg(Bl), if ∃l, b0 ∈ Bl
(8)

C. Summary

In summary, FIRM reduces the original POMDP into a tractable MDP on a finite subset of its nodes, which can be solved
offline. Thus, performing online phase of planning (or replanning) is computationally feasible. It is also shown that this construct
is probabilistic complete [18]. To exploit the generic FIRM framework, one has to find a proper (B,µ) pairs as the FIRM
nodes and local controllers. Also, there has to be a way of computing transition costs and probabilities. In the next section,
we propose one such approach for nonholonomic systems, in which to design the local controllers µij and FIRM nodes Bi,
we resort to a combination of a Kalman filter and a DFL-based controller, that can handle the nonholonomic systems in
belief space. Moreover, we discuss how the transition costs Cg(Bi, µij), and the transition probabilities Pg(·|Bi, µij), can
be evaluated in DFL-based FIRM. Finally, we solve the corresponding FIRM MDP and provide the algorithms for offline
construction of DFL-based FIRM and online planning with it.

IV. DFL-BASED FIRM CONSTRUCTION

In this section, we construct a FIRM, in which local controllers are composed of Kalman Filter as the estimator, and
Dynamic Feedback Linearization-based (DFL-based) controllers as the belief controller. Accordingly, we design reachable
FIRM nodes Bj , and local planners µij , required in (6). Then we discuss how the transition probabilities Pg(·|Bi, µij), and
costs Cg(Bi, µij) in (6) are computed. We start by defining notation needed for dealing with Gaussian beliefs.

Gaussian belief space: Let us denote the estimation vector by x+, whose distribution is bk = p(x+k) = p(xk|z0:k). Denote
the mean and covariance of x+ by x̂+ = E[x+] and P = E[(x+− x̂+)(x+− x̂+)T], respectively. Denoting the Gaussian belief
space by GB, every function b(·) ∈ GB, can be characterized by a mean-covariance pair, i.e., b ≡ (x̂+, P). Abusing notation,
we also show this using “equality relation”, i.e., b = (x̂+, P).

5

Information history: As discussed in partially-observable environments, the decision making at k-th time step is made based
on the observation history z0:k up to time step k and the control history u0:k−1 up to time step k − 1. Thus, in partially
observable environment, a controller is a mapping from information history to the control space µk : Zk+1 × Uk → U, i.e.,
uk = µk(z0:k, u0:k−1). However, usually the design of the controller in partially-observable environments is decomposed into
two tasks: i) designing an estimator that generates belief based on information history bk = τ(z0:k, u0:k−1) (or recursively
bk = τ(bk−1, zk, uk−1)) and ii) designing a belief controller that generates control signal based on the available belief, which
here by abusing notation it is also shown by µ, i.e., uk = µ(bk). In designing LQG controller, this decomposition leads to
designing a Kalman filter as the estimator and an LQR as the controller, whose combination preserves the optimality of the
overall local controller. However, in many cases this decomposition may lead to a suboptimal solution, which is inevitable
since the designing an optimal controller in partially-observable environments is a challenging task.

Unicycle control with partial information: In [16], [17] the optimal LQG controller is utilized for the construction of local
controllers in FIRM. However, it is only limited to the models which are linearly stabilizable to a point in state space, which
excludes the class of nonholonomic systems such as unicycle model. Here, we combine the Kalman filter and a DFL-based
controller to construct a controller for the unicycle mode with partial information. This construct is a suboptimal design for
the controller in partially-observable environment. However, it is very efficient in practice, and shows a promising solution for
constructing a Feedback-based Information RoadMap (FIRM) for nonholonomic systems such as the unicycle model.

A. Estimator Design

We adopt the Kalman Filter (KF) as the state estimator, which is vastly utilized for localizing unicycle robot [21]. Thus, the
belief dynamics bk+1 = τ(bk, uk, zk+1) comes from the Kalman filtering equations. In Appendix A, we review the Kalman
Filtering and its stationary behaviours in detail. Here, we only discuss the limiting belief behaviour under the stationary KF
(SKF).

State Space Model: Consider a PRM node v. Let us denote the linear (linearized) system about the node v by the tuple
Υ = (A,B,G,Q,H,M,R) that represents the following state space model:

xk+1= Axk + Buk + Gwk, wk ∼ N (0,Q) (9a)
zk= Hxk + Mvk, vk ∼ N (0,R). (9b)

Consider a stationary KF (SKF), which is designed to estimate the state of the system in (9). Let us also define the matrix Q̌
such that GQGT = Q̌Q̌T . Now, consider the class of systems, that satisfy the following property:

Property 2. The pair (A, Q̌) is a controllable pair[20], and the pair (A,H) is an observable pair[20].

Lemma 1. Given Property 2, the estimation covariance under the SKF, designed for the system in (9), converges to the matrix
Ps, independent of its initial covariance:

Ps = P−s − P−s HT (HP−s HT + MRMT)−1HP−s , (10)

where, P−s is the unique symmetric positive semidefinite solution of the following Discrete Algebraic Riccati Equation (DARE):

P−k+1 = A(P−k − P
−
k HT (HP−k HT + MRMT)−1HP−k)AT

+ GQGT . (11)

Proof: See [20].
The estimation mean, however, evolves randomly, as it is a function of obtained observations. In SKF, the evolution of

estimation mean is as follows:

x̂+k+1 = (I −KH)Ax̂+k + (I −KH)Buk

+ Kzk+1 + (I −KH)(I −A)v, (12)

where, K = P−s HT (HP−s HT + MRMT)−1.

B. Belief controller design

The belief system is an underactuated system, i.e., the dimension of control space is less than the dimension of belief space.
However, we can have full control of the estimation mean, while based on Lemma 1 the estimation covariance under the SKF,
tends to Ps. As a result, if we design a feedback controller to control the estimation mean towards node v in state space, and
assuming the system remains in the valid linearization region of the SKF (which is a reasonable assumption), then the whole
belief will approach toward bc = (v, Ps) in the belief space. Considering a stopping region in belief space, whose interior
contains bc, the belief process under the feedback control will hit the stopping region in a finite time.

6

For a nonholonomic system such as the unicycle model, the system is not linearly controllable. Thus, we resort to the original
nonlinear model, and utilize a Dynamic Feedback Linearization-based (DFL-based) controller to control the estimation mean
for the nonholonomic unicycle model. The nonlinear form of (12) is:

x̂+k+1 = f(x̂+k , uk, 0) + Kz̃k+1, (13)

where, z̃k+1 is the observation error, defined as

z̃k+1 = h(f(xk, uk, wk), vk+1)− h(f(x̂+k , uk, 0), 0)

≈ HAê+k + HGwk + Mvk+1, (14)

in which, the function h is the observation model that maps the states to observations, i.e., zk = h(xk, vk), where vk models
the zero-mean Gaussian sensing noise. Random variable ê+k is the estimation error defined by ê+k = xk − x̂+k . Note that ê+k
is not measurable and thus acts like a noise in equations. The approximation in (14) results from linearizing functions h and
f . The important point is that the equation in the right hand side of (14) does not depend on uk. Thus, the term Kz̃k+1 in
(13) acts like a control-independent perturbation affecting the system. Therefore, we adopt a controller to control the unicycle
model, which is effectively robust to the noise injected by Kz̃k+1. Obviously, the implicit assumption is that motion and
sensing uncertainties are not so large to take the system out of the valid linearization region, which is a reasonable practical
assumption. The controller of choice is a DFL-based controller proposed in [3], as it offers a robust behaviour with respect
to disturbances. Moreover, it provides an exponentially fast stabilization procedure, and has a natural, and smooth, transient
performance. Experimental results verifies the robustness of this controller to the above-mentioned disturbance Kz̃k+1.

To construct the DFL-based controller for unicycle model, first we transform the system state such that the target node
coincides with the origin, i.e., if we denote v = (vx,vy,vθ) and x̂+k = (x̂+k , ŷ

+
k , θ̂

+
k), we can transfer the system state as:(

x̆+k
y̆+k

)
=

(
cosvθ − sinvθ
sinvθ cosvθ

)−1(
x̂+k − vx

ŷ+k − vy

)
(15a)

θ̆+k = θ̂+k − vθ (15b)

Now the controller has to drive the x̆+k = (x̆+k , y̆
+
k , θ̆

+
k) to the origin.

Ignoring the disturbance term in estimation mean dynamics, and assuming x̂+k+1 = f(x̂+k , uk, 0), we compute the estimation
mean derivative in the last time step, based on the previous control signal uk−1 = (Vk−1, ωk−1): ˙̆x+k−1

˙̆y+k−1
˙̆
θ+k−1

 =

 Vk−1 cos θ̆+k−1
Vk−1 sin θ̆+k−1

ωk−1

 (16)

Accordingly, we compute the intermediate controls:

u′1 = −kp1x̆+k−1 − kd1 ˙̆x+k−1 (17)

u′2 = −kp2y̆+k−1 − kd2 ˙̆y+k−1 (18)

where, as described in [3], the condition on the gains are kpi, kdi > 0 for i = 1, 2 and also k2d1 − 4kp1 = k2d2 − 4kp2 > 0 and
kd2 − kd1 > 2(k2d2 − 4kp2).5.

Finally, we compute the control signal at time step k:

Vk = Vk−1 + (u′1 cos θ̆+k−1 + u′2 sin θ̆+k−1)δt (19)

ωk = (u′2 cos θ̆+k−1 − u
′
1 sin θ̆+k−1)V −1k−1 (20)

Therefore, the controller, parametrized by the target point v, receives current estimation mean x̂+k and the previous control
uk to generate the next control uk+1. We show this mapping by uk+1 = µ(x̂+k , uk).

C. Designing FIRM Nodes {Bj}
FIRM Nodes: As mentioned, to construct a FIRM, we first construct its underlying PRM, characterized by its nodes and edges

{{vj}, {eij}}. Linearizing the system about the PRM node vj results in a linear system Υj = (Aj ,Bj ,Gj ,Qj ,Hj ,Mj ,Rj):

xk+1= Ajxk + Bjuk + Gjwk, wk ∼ N (0,Qj) (21a)

zk= Hjxk + Mjvk, vk ∼ N (0,Rj) (21b)

where wk and vk are motion and measurement noises, respectively, drawn from zero-mean Gaussian distributions with
covariances Qj and Rj . Then, we design a stationary Kalman filter τ j and a DFL-based belief controller µj corresponding

7

to the system Υj . The controller µj is called the j-th node-controller. Accordingly, we choose the belief nodes Bj such that
Bj is an ε-ball in belief space, centered at bjc ≡ (vj , P js), where P js is the stationary covariance of the SKF designed for the
system Υj , computed using (10):

Bj = {b ≡ (x, P) : ‖x− vj‖ < δ1, ‖P − P js ‖m < δ2}, (22)

where ‖ · ‖ and ‖ · ‖m denote suitable vector and matrix norms, respectively. The size of FIRM nodes are determined by δ1
and δ2, which are sufficiently small to satisfy the approximation in (5). Based on Lemma 1, the condition ‖Pk − P js ‖m < δ2
is satisfied in after a deterministic finite time k > N and based on the adopted DFL design, which has a global attractive
behaviour in the state space the condition ‖x− vj‖ < δ1 is satisfied in some finite random time. In experiments, it is shown
that this time is short and the controller can take the estimation mean to its target region considerably fast.

D. PLQG-based Local Controllers µij

The role of the local controller µij is to drive the belief from the node Bi to node Bj . To construct the local controller µij ,
we precede the node-controller µj , with a so called edge-controller µijk .

Edge-controller: The main role of the edge-controller µijk is that it takes the belief at node Bi and drives it to the vicinity of
the node Bj , where it hands over the system to the node-controller µj , which in turn takes the system into a FIRM node Bi.
As opposed to the point-stabilization procedure, if we linearize the unicycle model along the PRM edge eij , where the nominal
linear velocity is greater than zero, the unicycle is linearly controllable. As a result, we use a time-varying LQG controller to
track the edge eij .

Local controllers: Thus, overall, the local controller µij is the concatenation of the edge-controller µijk and the node-controller
µj . By this construct, the expected stopping time of the node-controller decreases as the initial belief of the node-controller is
closer to the target node Bj , due to the usage of the edge-controllers.

E. Transition probabilities and costs

In general, it can be a computationally expensive task to compute the transition probabilities P(·|Bi, µij) and costs C(Bi, µij)
associated with invoking local controller µij at node Bi. However, owing to the offline construction of FIRM, it is not an
issue in FIRM. We utilize sequential Monte-carlo methods [23] to compute the collision and absorption probabilities. For the
transition cost, we first consider estimation accuracy to find the paths, on which the estimator, and consequently, the controller
can perform better. A measure of estimation error is the trace of estimation covariance. Thus, we use Φij = E[

∑T
k=1 tr(P ijk)],

where P ijk is the estimation covariance at the k-th time step of the execution of local controller µij . The outer expectation
operator is useful in dealing with the Extended Kalman Filter (EKF), whose covariance is stochastic[24], [25]. Moreover, since
we are also interested in faster paths, we take into account the corresponding mean stopping time, i.e., T̂ ij = E[T ij], and the
total cost of invoking µij at Bi is considered as a linear combination of estimation accuracy and expected stopping time, with
suitable coefficients ξ1 and ξ2.

C(Bi, µij) = ξ1Φij + ξ2T̂ ij . (23)

F. Construction of PLQG-based FIRM and Planning With it

The crucial feature of FIRM is that it can be constructed offline and stored, independent of future queries. Moreover, owing
to the reduction from the original POMDP to an n-state MDP on belief nodes, the FIRM MDP can be solved using standard
DP techniques such as value/policy iteration to yield the optimal policy πg that picks the optimal local planner µ∗ = πg(Bi)
at each FIRM node Bi among all controller µ ∈M(α, i).Algorithm 1 details the construction of FIRM. Given that the FIRM
graph is computed offline, the online phase of planning (and replanning) on the roadmap becomes very efficient and thus,
feasible in real time. If the given initial belief b0 does not belong to any Bi, we create a singleton set B0 = b0. To connect
the B0 to FIRM, we first, compute the expected value of the robot state, i.e. E[x0] using its distribution b0 and add the E[x0]
to the PRM nodes, and connect it to the PRM graph. The set of newly added edges going from E[x0] to the nodes on PRM
are called E(0). We design the local controllers associated with each edge in E(0) and call the set of them as M(0). Then
choosing a local controller in M(0), the belief enters one of FIRM nodes, if no collision occurs. Thus, given the current node,
we use policy πg defined in (6) over FIRM nodes to find µ∗, and pick µ∗ to move the robot into B(µ∗).Algorithm 2 illustrates
this procedure.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the results of FIRM construction on a simple PRM. As a motion model, we consider the
nonholonomic unicycle model whose kinematics is given in (1). As the observation model, in experiments, the robot is

8

Algorithm 1: Offline Construction of DFL-based FIRM

1 input : Free space map, Xfree
2 output : FIRM graph G
3 Construct a PRM with nodes V = {vj}, and edges E = {eij}, where i, j = 1, · · · , n;
4 forall the PRM nodes vj ∈ V do
5 Design the node-controller (DFL-based) µj to stabilize the system to vj ;
6 Compute the FIRM node center bjc = (vj , P js) using (10);
7 Construct FIRM node Bj using (22) centered at bjc;

8 Collect all FIRM nodes V = {Bj};
9 forall the (Bi, eij) pairs do

10 Design the edge-controller µijk , as discussed in Section IV-D;
11 Construct the local controller µijk by concatenating edge-controller µijk and node-controller µjk;
12 Set the initial belief b0 equal to the center of Bi, based on the approximation in (5);
13 Generate sample belief paths b0:T and state paths x0:T induced by controller µij invoked at Bi;
14 Compute the transition probabilities Pg(F |Bi, µij) and Pg(Bj |Bi, µij) for all γ and transition cost Cg(Bi, µij);

15 Collect all local controllers M = {µij};
16 Compute cost-to-go Jg and feedback πg over the FIRM by solving the DP in (6);
17 G = (V,M, Jg, πg);
18 return G;

Algorithm 2: Online Phase Algorithm (Planning with DFL-based FIRM)

1 input : Initial belief b0, FIRM graph G, Underlying PRM graph
2 if ∃Bi ∈ V such that b0 ∈ Bi then
3 Choose the next local controller µij = πg(Bi);
4 else
5 Compute v0 = E[x0] based on b0, and connect v0 to the PRM nodes. Call the set of newly added edges

E(0) = {e0j};
6 Design local planners associated with edges in E(0); Collect them in set M(0) = {µ0j};
7 forall the µ ∈M(0) do
8 Generate sample belief and state paths b0:T , x0:T induced by taking µ at b0;
9 Compute the transition probabilities P(·|b0, µ) and transition costs C(b0, µ);

10 Set i = 0; Choose the best initial local planner µ0j within the set M(0) using (8);

11 while Bi 6= Bgoal do
12 while (@Bj , s.t., bk ∈ Bj) and “no collision” do
13 Apply the control uk = µijk (bk) to the system;
14 Get the measurement zk+1 from sensors;
15 if Collision happens then return Collision;
16 Update belief as bk+1 = τ(bk, µ

ij
k (bk), zk+1);

17 Update the current FIRM node Bi = Bj ;
18 Choose the next local controller µij = πg(Bi);

equipped with exteroceptive sensors that provide range and bearing measurements from existing radio beacons (landmarks) in
the environment. The 2D location of the j-th landmark is denoted by Lj . Measuring Lj can be modeled as follows:

jz = [‖jd‖, atan2(jd2,
jd1)− θ]T + jv, jv ∼ N (0, jR),

jR = diag((ηr‖jd‖+ σrb)
2, (ηθ‖jd‖+ σθb)2), (24)

where jd = [jd1,
jd2]T := [1x, 2x]T − Lj . The uncertainty (standard deviation) of sensor reading increases as the robot

gets farther from the landmarks. The parameters ηr = ηθ = 0.3 determine this dependency, and σrb = 0.01 meter and
σθb = 0.5 degrees are the bias standard deviations. A similar model for range sensing is used in [10]. The robot observes all
NL landmarks at all times and their observation noises are independent. Thus, the total measurement vector is denoted by
z = [1zT , 2zT , · · · ,NLzT]T and due to the independence of measurements of different landmarks, the observation model for
all landmarks can be written as z = h(x) + v, where v ∼ N (0,R) and R = diag(1R, · · · ,NLR).

9

Figure 1(a) shows a simple environment with nine radio beacons, which are shown by the black stars. A PRM is constructed
in the 3D space of (x, y, θ) with 46 nodes and 102 edges. However, only the (x, y) portion of the all elements are shown in
Fig.1(a). Each 2D node in 1(a) corresponds to several 3D nodes, only one of which is shown in Fig.1(a), with a blue triangle,
whose number is written in red. To construct the FIRM nodes, we first solve the corresponding DARE’s on each PRM node
and design its corresponding DFL-based node-controller. Then, we pick the node centers bjc = (vj , P js), some of which are
drawn in Fig.1(a). The covariance matrices P js are shown by blue ellipses that represent their 3σ bound. Finally, to handle
the error scale difference in position and orientation variables, we construct the FIRM nodes based on the component-wise
version of (22), as follows:

Bj = {b = (x, P)| |x− vj |
.
< ε, |P − P js |

.
< ∆}, (25)

where |·| and
.
< stand for the absolute value and component-wise comparison operators, respectively. We set ε = [0.8, 0.8, 5◦]T

and ∆ = εεT to quantify the Bj’s.

0 20 40 60 80 100

-20

-10

0

10

20

30

40

50

60

70

80

1

2

3

4

5

6

7 8

9

10

11

12

13

14
15

16
17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Start

Goal

(a)

0 20 40 60 80 100

-20

-10

0

10

20

30

40

50

60

70

80

b
c
1

b
c
2

b
c
4

b
c
5

b
c
8

b
c
9

b
c
11

b
c
13

b
c
14

b
c
16

b
c
32

b
c
33

b
c
35

b
c
38

b
c
42

(b)

Fig. 1. A sample PRM, with numbered nodes. Seven landmarks are shown by black stars and obstacles are shown by gray polygons. (a) Node 9 is the start
node and nodes 20, 27, 39, and 42 are goal nodes. Shortest path and the most-likely path under FIRM policy are shown in green and red, respectively. (b)
The center of FIRM node, i.e., bc is drawn for a selected number of PRM nodes. The feedback πg is visualized for those FIRM nodes by red arrows.

After designing FIRM nodes and local controllers, the transition costs and probabilities are computed in the offline con-
struction phase. Here, we use sequential weighted Monte-carlo based algorithms [23] to compute these quantities. In other
words, for every (Bi, µij) pair, we perform M runs and accordingly approximate the transition probabilities Pg(Bj |Bi, µij),
Pg(F |Bi, µij), and costs Cg(Bi, µij). A similar approach is detailed in [17]. Table I shows these quantities along the resulting
path under FIRM policy Fig.1(a), where M = 101 and the coefficients in (23) are ξ1 = 0.98 and ξ2 = 0.02. Along some
edges, none of 101 particles have collided with obstacles and thus the collision probability is approximated by a value less
than 1/101 = 0.0099. The expected value and standard deviation of the time it takes for the controller to drive the belief into
the target node is also reported in table I, which reflects the efficiency of the DFL-based controller. Table II shows the same
quantities for the edges along the shortest path. Comparing these two tables, it is obvious that the path returned by FIRM policy
is safer, in the sense of collision probability, and most informative, in the sense of localization uncertainty, when compared to
the shortest path.

TABLE I
COMPUTED COSTS FOR SEVERAL PAIRS OF NODE-AND-CONTROLLER USING 101 PARTICLES ALONG THE PATH RETURNED BY πg .

(Bi,µ
ij) pair B9,µ9,1 B1,µ1,5 B5,µ5,33 B33,µ33,35 B35,µ35,38 B38,µ38,42

Pg(F |Bi,µ
ij) 15.3846% 7.6923% <0.99% <0.99% <0.99% 15.3846%

Φij 4.5967 1.9831 0.68936 1.6048 0.58705 0.53226
E[T ij] 144.4545 217.3077 86.1538 161.2308 73 180.5455
σ[T ij] 66.7224 28.2396 9.109 5.7757 2.7433 40.6924

Plugging the computed transition costs and probabilities into (6), we can solve the DP problem and compute the policy
πg on the graph. This process is performed only once offline, independent of the starting point of the query. Fig. 1(b) shows
the policy πg on the constructed FIRM in this example. Indeed, at every FIRM node Bi, the policy πg decides which local
controller should be invoked, which in turn aims to take the robot belief to the next FIRM node.

10

TABLE II
COMPUTED COSTS FOR SEVERAL PAIRS OF NODE-AND-CONTROLLER USING 101 PARTICLES ALONG THE SHORTEST PATH.

(Bi,µ
ij) pair B9,µ9,1 B1,µ1,4 B4,µ4,8 B8,µ8,27

Pg(F |Bi,µ
ij) 15.3846% 38.4615% 46.1538% 38.4615%

Φij 4.5967 2.0181 2.8001 2.1664
E[T ij] 144.4545 168.375 127.2857 111.25
σ[T ij] 66.7224 50.3841 12.9192 38.1042

Thus, the online part of planning is quite efficient, i.e., it only requires executing the controller and generating the control
signal, which is an instantaneous computation. An important consequence of the feedback πg is efficient replanning. In other
words, since πg is independent of query, if due to some unmodeled large disturbance, the robot’s belief deviates significantly
from the planned path, it suffices to bring the robot back to the closest FIRM node and from there πg drives the robot to the
goal region as shown in Fig. 1(b). We show the resulted path under policy πg , in red in Fig. 1(a). The shortest path is also
illustrated in Fig. 1(a) in green. It can be seen that the path returned by the best policy detours from the shortest path to a path
along which the filtering uncertainty is smaller, and it is easier for the controller to avoid collisions.

VI. CONCLUSION

In this paper, we propose a sampling-based roadmap in belief space for nonholonomic motion planning. The crucial feature
of the roadmap is that it preserves the “optimal substructure property,” and establishes a rigorous connection with the original
POMDP problem that models the problem of planning under uncertainty. The method lends itself to the FIRM framework.
Exploiting the properties of Kalman filter and DFL-based controllers, the local planners in FIRM are designed such that the
belief node reachability is achieved for systems with nonholonomic constraints. As a result, the roadmap provides a sampling-
based feedback solution for nonholonomic systems in belief space.

APPENDIX A
STATIONARY KALMAN FILTERING

In this section, we first discuss the system linearization around the planned point, and then discuss the Stationary Kalman
Filtering (SKF) procedure. Consider the nonlinear partially-observable state-space equations of the system as follows:

xk+1 = f(xk, uk, wk), wk ∼ N (0, Qk) (26a)
zk = h(xk, vk), vk ∼ N (0, Rk) (26b)

and consider a planned state point xp, to whose vicinity the controller has to drive the system. If the system state reaches the
xp, it is assumed that the system remains there with zero control, up = 0, i.e.,

xp = f(xp, 0, 0) (27)

The role of a closed-loop stochastic controller, during the state regulation, is compensating robot deviations from the desired
point due to the noise effects and driving the robot close to the desired point. When only some imperfect information of the
state xk is available, an estimator can make the estimate x+k of the state based on the available partial observations z0:k up
to the current time. Accordingly, a controller can generate the control signal based on the estimated value of the state, i.e.
belief. Based on separation principle [20], in linear system with Gaussian noises, the above minimization in is equivalent to
performing two separate minimizations that lead to the LQG controller. However, in nonlinear systems, this procedure leads
to a suboptimal design.

In the following, we first discuss the linearization of a nonlinear model and then we discuss how the stationary Kalman
filtering for this linearized system.

Model linearization: Given a desired point xp, we linearize the dynamics and observation model in Eq. (26), as follows:

xk+1 = f(xp, 0, 0) +As(xk − xp) +Bs(uk − 0) +Gswk, wk ∼ N (0, Qs) (28a)
zk = h(xp, 0) +Hs(xk − xp) +Msvk, vk ∼ N (0, Rs) (28b)

where

Ak =
∂f

∂x
(xp, 0, 0), Bs =

∂f

∂u
(xp, 0, 0), Gs =

∂f

∂w
(xp, 0, 0),

Hs =
∂h

∂x
(xp, 0), Ms =

∂h

∂v
(xp, 0) (29)

Now, let us define the following errors:
• Main error: ek = xk − xp.

11

• SKF error (estimation error): ẽk = xk − x̂+k , where x̂+k = E[x+k] = E[xk|z0:k].
• Belief controller error: ê+k = x̂+k − xp.

Note that these errors are linearly dependent: ek = ê+k + ẽk. Also, defining δuk = uk and δzk = zk − zp := zk − h(xp, 0), we
can rewrite above linearized models as follows:

ek+1 = Asek +Bsδuk +Gswk (30a)
δzk = Hsek +Msvk (30b)

Stationary Kalman Filter: In SKF, we aim to provide an estimate of the system’s state based on the available partial
information we have obtained until time k, i.e., z0:k. The state estimate is a random vector denoted by x+k , whose distribution
is the conditional distribution of the state on the obtained observations so far, which is called belief and is denoted by
bk = p(x+k) = p(xk|z0:k). In the Gaussian case, the belief can only be characterized by its mean and covariance, i.e.,
bk ≡ (x̂+k , Pk). Thus, in the Gaussian case, we can write:

bk = p(x+k) = p(xk|z0:k) = N (x̂+k , Pk)⇔ bk ≡ (x̂+k , Pk) (31)

x̂+k = E[xk|z0:k], Pk = C[xk|z0:k] (32)

where E[·|·] and C[·|·] are the conditional expectation and conditional covariance operators, respectively.
SKF consists of two steps at every time stage: prediction step and update step. In the prediction step, the mean and covariance

of prior x−k is computed. For the system in Eq. (30) prediction step is:

ê−k+1 = Asê
+
k +Bsδuk (33)

P−k+1 = AsP
+
k A

T
s +GsQsG

T
s (34)

In the update step, the mean and covariance of posterior x+k is computed. For the error system in Eq. (30), the update step is:

Kk = P−k H
T
s (HsP

−
k H

T
s +MsRsM

T
s)−1 (35)

ê+k+1 = ê−k+1 +Kk+1(δzk+1 −Hsê
−
k+1) (36)

P+
k+1 = (I −Kk+1Hs)P

−
k+1 (37)

Note that

x̂+k = xp + ê+k , Pk = P+
k (38)

In SKF, if (As, Hs) is an observable pair and (As, Q̌s) is a controllable pair, where GsQsGTs = Q̌sQ̌
T
s then the prior and

posterior covariances P−k and Pk and the filter gain Kk, all converge to their stationary values, denoted by P−s , Ps, and
Ks, respectively [20]. The P−s can be computed by solving following DARE. Having P−s , stationary gain Ks and estimation
covariance Ps is computed as follows:

P−s = GsQsG
T
s +As(P

−
s − P−s HT

s (HsP
−
s H

T
s +MsRsM

T
s)−1HsP

−
s)ATs , (39)

Ks = P−s H
T
s (HsP

−
s H

T
s +MsRsM

T
s)−1, (40)

Ps = (I −KsHs)P
−
s (41)

REFERENCES

[1] Z. Li and J. Canny, Eds., Nonholonomic motion planning. Kluwer Academic Press, 1993.
[2] R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” IJRR, vol. 25, no. 5-6, pp.

509–525, 2006.
[3] G. Oriolo, A. De Luca, and M. Vandittelli, “WMR control via dynamic feedback linearization: design, implementation, and experimental validation,”

IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 835–851, 2002.
[4] K. Astrom, “Optimal control of markov decision processes with incomplete state estimation,” Journal of Mathematical Analysis and Applications, vol. 10,

pp. 174–205, 1965.
[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,” Artificial Intelligence, vol. 101,

pp. 99–134, 1998.
[6] L. Kavraki, P. Švestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
[7] N. Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM: An Obstacle-Basaed PRM for 3D workspaces,” in wafr, 1998, pp. 155–168.
[8] S. Lavalle and J. Kuffner, “Randomized kinodynamic planning,” International Journal of Robotics Research, vol. 20, no. 378-400, 2001.
[9] D. Hsu, “Randomized single-query motion planning in expansive spaces,” Ph.D. dissertation, Department of Computer Science, Stanford University,

Stanford, CA, 2000.
[10] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space by factoring the covariance,” International Journal of Robotics Research,

vol. 28, no. 11-12, October 2009.
[11] V. Huynh and N. Roy, “icLQG: combining local and global optimization for control in information space,” in IEEE International Conference on Robotics

and Automation (ICRA), 2009.

12

[12] J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information,”
IJRR, vol. 30, no. 7, pp. 895–913, 2011.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. MIT Press, 2001.
[14] M. Sniedovich, “Dijkstra’s algorithm revisited: the dynamic programming connexion,” Control and Cybernetics, vol. 35, no. 3, pp. 599–620, 2006.
[15] S. Chakravorty and S. Kumar, “Generalized sampling-based motion planners,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 41,

no. 3, pp. 855–866, 2011.
[16] A. Agha-mohammadi, S. Chakravorty, and N. Amato, “FIRM: Feedback controller-based Information-state RoadMap -a framework for motion planning

under uncertainty-,” in IROS, 2011.
[17] ——, “Motion planning in belief space using sampling-based feedback planners,” Technical Report: TR11-007, Parasol Lab., CSE Dept., Texas A&M

University, 2011.
[18] ——, “On the probabilistic completeness of the sampling-based feedback motion planners in belief space,” in IEEE International Conference on Robotics

and Automation (ICRA), 2012.
[19] R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory, R. S. M. R. W. Brockett and H. J. Sussmann,

Eds. Boston: Birkhauser, 1983, pp. 181–191.
[20] D. Bertsekas, Dynamic Programming and Optimal Control: 3rd Ed. Athena Scientific, 2007.
[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.
[22] R. He, E. Brunskill, and N. Roy, “PUMA: Planning under uncertainty with macro-actions,” in Proceedings of the Twenty-Fourth Conference on Artificial

Intelligence (AAAI), Atlanta, GA, 2010.
[23] A. Doucet, J. de Freitas, and N. Gordon, Sequential Monte Carlo methods in practice. New York: Springer, 2001.
[24] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches. John Wiley and Sons, Inc, 2006.
[25] J. Crassidis and J. Junkins, Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC, 2004.

13

	Introduction
	Controllability in nonholonomic systems
	Motion planning under uncertainty
	FIRM: Feedback-based Information RoadMap
	Overall policy
	Summary

	DFL-based FIRM construction
	Estimator Design
	Belief controller design
	Designing FIRM Nodes {Bj}
	PLQG-based Local Controllers ij
	Transition probabilities and costs
	Construction of PLQG-based FIRM and Planning With it

	Experimental Results
	Conclusion
	Appendix A: Stationary Kalman Filtering
	References

