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A Randomly Perturbed Iterative Proper Orthogonal
Decomposition (RI-POD) Technique for Filtering

Distributed Parameter Systems
D. Yu, S. Chakravorty

Abstract—In this paper, we consider the filtering of distributed
parameter systems (DPS), i.e., systems governed by partial
differential equations (PDE). We adopt a reduced order model
(ROM) based strategy to solve the problem. We propose a
randomly perturbed iterative version of the snapshot proper
orthogonal decomposition (POD) technique, termed RI-POD, to
construct ROMs for DPS that is capable of capturing their global
behaviour. Further, the technique is entirely data based, and
is applicable to forced as well as unforced systems. We apply
the ROM generated using the RI-POD technique to construct
reduced order Kalman filters to solve the DPS filtering problem.
The methodology is tested on the 1-dimensional heat equation.

Keywords: Proper Ortrhogonal Decomposition (POD), Fil-
tering/ Data Assimilation, Distributed Parameter Systems.

I. INTRODUCTION

In this paper, we are interested in the filtering/ data
assimilation of distributed parameter sytems (DPS), in
particular, systems that are governed by partial differential
equations (PDE). We take a reduced order model (ROM)
based approach to the problem. We propose a randomly
perturbed iterative version of the snapshot proper orthogonal
decomposition (POD) technique that allows us to form an
ROM of the DPS of interest in terms of the eigenfunctions
of the PDE operator. We then apply this ROM, along with
the Kalman filtering technqiue, to form a reduced order filter
for the DPS. The filter is constructed in an offline-online
fashion where the expensive computations for the ROM
construction is accomplished offline, while the online part
consists of the reduced order Kalman filter which is much
more computational tractable than the full problem. The
technique is applied to the 1-dimensional heat equation.

The problem of estimating dynamic spatially distributed
processes is typically solved using the Ensemble Kalman
Filter (EnKF) and has been used extensively in the Geophysics
litertaure [1], [2] and more recently, in Dynamic Data Driven
Application Systems (DDDAS) and traffic flow problems
[3]–[9]. The EnKF is a particle based Kalman filter that
maintains an ensemble of possible realizations of the dynamic
map. The Kalman prediction and measurement update steps
are performed using ensemble operations instead of the
traditional matrix operations. A primary issue with the EnKF
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is the choice of the ensemble realizations and their number.
This is almost always done in a heuristic fashion. Also, the
prediction stage requires expensive forward simulations of
the realizations using a solver which can take a significant
amount of time. Thus, real time operation is an issue. In
contrast, all the expensive computations for our ROM based
technique, namely POD basis and ROM generation, are
done offline and hence, real time operation is never an
issue given the offline computations. Thus, we may think
of our approach as a computationally tractable alternative
to the EnKF algorithm. Historically, there has been a lot
of theoretical research in the Control Systems community
on the estimation and control of systems driven by PDEs
[10]–[19]. In fact, it is well known that for linear PDEs,
an infinite dimensional version of the Kalman filter exists
which involves the solution of an operator Ricatti equation
[20]. This can be very computationally intensive and may
be unsuitable for online implementation. In contrast, the
major computational complexity of the ROM based technqiue
that we propose is offline and the online computations are
essentially trivial thereby making the technique very suitable
for online implementation.

As has been noted before, we take a ROM based approach
to solving the problem of filtering in DPS. In particular,
we rely on the so-called proper orthogonal decomposition
(POD), more precisely, the snapshot POD technique, to
construct ROMs for the DPS of interest. The POD has
been used extensively in the Fluids community to produce
ROMs of fluid physics phenomenon such as turbulence and
fluid structure interaction [21]–[24]. There has also been
work recently to produce so-called balanced POD models to
better approximate outputs of interest through an amalgam
of the snapshot POD and the balanced model reduction
paradigm of control theory [25] to produce computationally
efficient balanced POD models of the physical phenomenon
of interest [26], [27]. More recently, there has been work
on obtaining information regarding the eigenfunctions of a
system based on the snapshot POD, called the dynamic mode
decomposition (DMD) [28], [29]. However, a couple of issues
are central to the construction of the snapshot POD technique:
1) at what times do we take snapshots of the process, and
2) the snapshot POD essentially provides a reduced basis
approximation of the localized behaviour of a system, is
there a constructive way to infer the global behaviour of a
system from the snapshot POD? We propose a randomly
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perturbed iterative approach to the snapshot POD (RI-POD)
which iteratively allows us to sample the process of interest
at various different time scales thereby answering question
1 above. Further, we show that this process allows us to
theoretically reconstruct all the eigenfunctions of the original
system using either data from experiments or from numerical
simulations (similar to the DMD approach) thereby allowing
us to infer global behaviour of the system. Moreover, to the
best of the knowledge of the authors, except for some recent
work in Fuid mechanics [30], the use of POD based ROMs
for filtering DPS is relatively non-existent. We apply the
RI-POD based ROMs to the filtering problem and illustrate
our technique on the 1-dimensional heat and wave equations
as well as the 1-dimensional traffic problem.

The paper is organized as follows. In section II, we in-
troduce the DPS filtering problem. In section III, we present
the offline RI-POD procedure used to construct the ROM of
the DPS. In section IV, we outline the online portion of the
reduced order Kalman filter constructed for the DPS filtering
along with error bounds for the resulting approximations.
Further,we also apply the offline-online procedure problem to
the solution of 1-dimensional DPS filtering problem for the
heat equation.

II. PRELIMINARIES

In this work,we are interested in the filtering of distributed
parameter systems, systems whose evolution is governed by a
partial differential equation (PDE), given sparse measurements
of the spatio-temporal field variable. Mathematically, we are
interested in estimating the state of the field variable X ∈ H ,
for some suitable Hilbert space H . The state X is governed
by the operator equation

Ẋ = AX +W, (1)

where W is a spatially distributed Gaussian white noise
process perturbing the motion of the system. We assume that
the boundary conditions for the PDE are known. We do not
have access to measurement of the entire state, instead we
only have access to measurements of the field at some sparse
set of spatial locations in the domain of the process given by

Y (tk, xj) = CX(tk) + V(j)
k , (2)

where X(tk) represents the state at the discrete time instant
tk, and Y (tk, xj) represents a localized measurement of the
state variable at the sparse set of locations given by xj ,
j = 1, · · ·m, and V(j)

k is a discrete time white noise process
corrupting the measurements at the spatial location xj . We
assume that the the differential operator A is self adjoint with
a compact resolvent, and thus, A has a discrete spectrum with
a full set of eigenvectors that forms an orthonormal basis for
the Hilbert space H . Further, we assume that the operator A
generates a stable semigroup.

Given the above assumptions,we can discretize the PDE
above using computational techniques such as finite ele-
ments(FE)/ finite difference (FD) to obtain a discretized ver-

sion of the operator equations in Euclidean space <N given
by the following:

ẋ = Ax+ w, (3)
yk = Cxk + vk, (4)

where x is a discretized version of the state X that resides
in the high dimensional Euclidean space <N , while w and vk
are discretized versions of the white noise process corrupting
the state and measurement equations respectively. Given that
the operator A is self-adjoint, the discretized operator A is
a symmetric matrix with a full set of eigenvectors and real
eigenvalues whose eigenvectors form an orthonormal basis of
<N and for suitable large N , are arbitrarily good approxima-
tions of the true eigenfunctions of the original operator A.
We shall assume throughout this paper that a fine enough
discretization is given to us and thus, the behavior of the
original system is captured sufficiently well by the discretized
version of the system. Thus, in the rest of the paper, we only
consider the discretized version of the problem. Given the
above discretization, a naive approach to the solution of the
filtering problems is to use a standard Kalman filter to solve
the problem. However, due to the very high dimensionality
of <N , since N can easily run into millions of degrees of
freedom (DOF) for a general finely discretized PDE, the
Kalman filtering equations are computationally intractable for
such high DOF systems. Thus, first we need to suitably reduce
the order of the system before we can hope to apply Kalman
filtering techniques to the above problem.

III. A RANDOMLY PERTURBED ITERATIVE APPROACH TO
PROPER ORTHOGONAL DECOMPOSITION (RI-POD)

Consider the following linear system:

ẋ = Ax, given x(0), (5)

where x ∈ <N , N is very large and A is a symmetric matrix.
Recall that the above high dimensional linear system results
from the discretization of a self adjoint linear operator with a
compact resolvent.

A 1. We assume that there is a unique null vector correspond-
ing to A and that the matrix A is Hurwitz, i.e., the system is
stable.

Suppose that we choose some arbitrary initial condition x(0)
and take M snapshots of the system’s trajectory at the time
instants t1 < t2 < · · · < tM , where these snapshots need not
be equi-spaced. Let us denote the data matrix of the stacked
snapshots by X , i.e.,

X = [x1, x2, · · · , xM ],

where xi = x(ti). Suppose now that the number of snapshots
is much smaller than the dimension of the system, i.e.,
M << N . Then, using the snapshot POD technique, we can
get the POD basis T of the trajectory encoded in the snapshot
ensemble X as follows:

T = XVpΣ
−1/2
p , (6)
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where Vp and Σp are the eigenvector-eigenvalue pair corre-
sponding to the correlation matrix X ′X , i.e.,

(X ′X)Vp = VpΣp. (7)

Note that the MxM eigenvalue problem to be solved for the
POD eigenfunctions is much easier than the high dimensional
NxN eigenvalue problem that needs to be solved if we were
interested in solving for the eigenvalues and eigenvectors of
A. Given the snapshot POD eigenfunctions, we can obtain a
reduced order approximation of the system in Eq. 5 as follows:

ψ̇ = (T ′AT )ψ ≡ Ãψ, (8)

where ψ represents the projection of the system state onto
the POD eigenfunctions and Ã represents the reduced order
MxM system matrix.
Consider the reduced order system matrix Ã. We know that
Ã is symmetric and thus, has a full eigenvalue decomposition.
Let (Λ, P ) represent the eigenvalue-eigenvector pair for Ã,
i.e.,

ÃP = PΛ. (9)

Noting that Ã = PΛP ′, the ROM matrix Ã transformed to the
orthonormal co-ordinates specified by P , can be represented
in the modal co-ordinates φ as:

φ̇ = Λφ. (10)

Thus it follows that

Λ = (P ′T ′)A(TP ), (11)

where T is the POD eigenfunction matrix and P is the ROM
eigenfunction matrix. Note that T is NxM and that P is
MxM , and hence, TP is NxM . The above equation looks
suspiciously like an eigen decomposition of the matrix A
except that M << N and thus, this is not necessary. Note
that the transformation TP denotes the transformation from
the original state space to the POD eigenfunction space to
the ROM eigenfunction space. In the following, we relate the
eigenvalues and eigenvectors of A to the diagonal form Λ and
the transformation TP .

A 2. Assume that “a” eigenvectors of the matrix A are active
in the snapshot ensemble X , i.e.,

xi =

a∑
j=1

αijvj ,

where a ≤ M and without loss of generality, it is assumed
that the active eigenvectors consist of the first “a” eigenvec-
tors. This assumption essentially implies that the number of
modes active within the snapshots is less than the number of
snapshots in the ensemble.

The following result is then true.

Proposition 1. The columns of the transformation TP are the
eigenvectors of A with corresponding eigenvalues encoded in
the diagonal matrix Λ, i.e.,

A(TP ) = Λ(TP ). (12)

Proof:
Recall that T = XVpΣ

−1/2
p . We have

X = V α = [v1, v2, · · · va]

α1
1 .. αM1
. .. .
α1
a .. αMa

 ,
where note that V is an Nxa and α is an axM matrix. For
simplicity, let a = M .Then, it follows that

Ã = T ′AT = Σ−1/2p V ′pX
′AXVpΣ

−1/2
p ,

= (Σ−1/2p V ′pα
′)︸ ︷︷ ︸

MxM

(V ′AV )︸ ︷︷ ︸
MxM

(αVpΣ
−1/2
p )︸ ︷︷ ︸

MxM

.

Comparing this to the fact that Ã = PΛP ′, it follows that

P = Σ−1/2p V ′pα
′, (13)

if (αVpΣ
−1/2
p )(Σ

−1/2
p V ′pα

′) = I . To show this, note that

VpΣ
−1
p V ′p = (X ′X)−1 = (α′V ′V α)−1 = α−1(α′)−1. (14)

The inverse of α exists because its full rank (rank M ). The
above implies that

(αVpΣ
−1/2
p )(Σ−1/2p V ′pα

′) = αα−1(α′)−1(α′) = I. (15)

Hence, it follows that

TP = (XVpΣ
−1/2
p )(Σ−1/2p V ′pα

′),

= V (αVpΣ
−1/2
p )(Σ−1/2p V ′pα

′) = V, (16)

i.e., the columns of TP are indeed eigenvectors of A. More-
over, it also follows that owing to the uniqueness of the simi-
larity transformation of Ã that the eigenvalues corresponding
to the eigenvectors in TP are in the diagonal form Λ. Hence,
this proves our assertion for the case when a = M .
When a < M , the rank of the snapshot ensemble X is a < M
and hence, the rank of X ′X is a < M . Thus, it follows
that the POD eigenvalues will be non-zero for only a POD
eigenfunctions. Therefore, the transformation into the POD
basis T = XVpΣ

−1/2
p should only include only the POD

eigenvectors corresponding to the non-zero eigenvalues. Once
this is understood, then we can see that TP is going to be
axa and we are back to the situation considered previously.
In this fashion, the assertion is also proved for the case when
a < M and thereby, completes the proof of the proposition.

At this point, we make the following remark.

Remark 1. Suppose that a > M , i.e., the number of active
eigenvectors are more than the number of snapshots. WLOG,
let a = N . Then

Ã = T ′AT = Σ−1/2p V ′pX
′AXVpΣ

−1/2
p

= (Σ−1/2p V ′pα
′)V ′AV (αVpΣ

−1/2
p )

= (Σ−1/2p V ′pα
′)︸ ︷︷ ︸

MxN

Λ︸︷︷︸
NxN

(αVpΣ
−1/2
p )︸ ︷︷ ︸

NxM
= β′︸︷︷︸

MxM

Γ︸︷︷︸
MxM

β︸︷︷︸
MxM

,

where (β,Γ) represents the eigenvalue decomposition of the
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ROM matrix Ã. Note that now owing to the fact that N >
M , we can no longer use the uniqueness of the similarity
transformation of Ã to conclude that the transformation Tβ
contains the eigenvectors of A. In fact, some of them might
be the same as the eigenvectors of A, however, it is not
necessary. In particular, theoretically, we cannot conclude
anything regarding the relationship of Tβ to the eigenfunctions
of A.

The above proposition and the remark above suggest a
technique through which eigenvectors of the system matriX
A can be extracted upto any time-scale. First,we make the
following assumption.

A 3. We assume that there are K characteristic timescales
embedded in the matrix A, namely T1, · · ·TK . Let the eigen-
values corresponding to timescale Tj be {λ(j)1 , · · ·λ(j)Mj

} and

let the corresponding eigenvectors be [v
(j)
1 , · · · v(j)Mj

] ≡ V (j).
Further, we assume that the timescales are well-separated,
i.e., if for some t, eλ

(j)
k t 6= 0, then eλ

(i)
k t ≈ 0 for all i < j.

The above assumption essentially implies all the eigenvectors
corresponding to timescales below a given timescale decay
well before the eigenvectors at the given timescale decay.

At this point, we also need to make sure that all possible
eigenfunctions corresponding to any timescale are excited. The
following result assures us of this:

Proposition 2. Let the initial condition to the linear system
in Eq. 5 be chosen according to a Gaussian distribution
N(0, σ2I). Let the jth such trajectory be denoted by X(j).
Then, every eigenfunction of A is excited almost surely, i.e.,
given any eigenfunction, there is atleast one trajectory X(j)

such that the eigenfunction is active within the ensemble as
j →∞.

Proof: Due to the eigenvalue decomposition of A, we may
write:

x(t) =

N∑
i=1

eλit(x(0), vi)vi,

where (., .) denotes the inner product in <N . The above
implies that (x(t), vi) = eλit(x(0), vi), and hence

E|(x(t), vi)|2 = e2λitE|(x(0), vi)|2

= e2λitv′iR0vi = σ2e2λit. (17)

Thus, the ith component of the system trajectory, i.e., the
contribution of the ith eigenvector, is a Gaussian random
variable with zero-mean and a variance that exponentially
decays in time as shown above. Thus, the ith mode is bound
to be active for atleast one among the ensemble of trajectories.
In fact, owing to the Gaussian nature of the component, it is
true that its absolute value will be above any given threshold,
at any given time, with a finite probability.

Given the results above and assumption A3, we are in a
position to outline a procedure that allows us to isolate all
eigenfunctions at any given timescale.

Suppose without loss of generality that T1 > T2 · · · > TK .
Suppose now that we are interested in isolating all the
eigenfunctions corresponding to the timescale T1. We choose
an initial time t

(1)
0 and subsequent snapshot times t

(1)
n ,

n = 1 : M , such that M > M1 and such that the initial time
t
(1)
0 >> T2. Thus, the snapshot timing assures us that all the

eigenvectors at the timescales below T1 will have decayed by
the snapshot times of interest, and thus, the only participating
modes are the eigenfunctions corresponding to timescale T1.
Then, using Propositions 1 and 2, we know that we can
isolate all the eigenfunctions at the timescale T1 given enough
snapshot ensembles. In particular, suppose that X(1)

j is the
jth snapshot ensemble at timescale T1. Due to proposition 2,
as j → ∞, we know that every eigenfunction in set V (1) is
bound to be excited. Further, due to the fact that M > M1,
it follows using Proposition 1 that the eigenfunctions of
the ROM are the same as the eigenfunctions of A. Thus,
every snapshot ensemble gives us some of the eigenvectors
v ∈ V (1) and as j → ∞, we are assured that all possible
v ∈ V (1) are recovered.

Given that we have recovered all the eigenfunctions V (1)

corresponding to the longest timescale T1, we can now it-
eratively recover all the eigenfunctions at all the subsequent
timescales as follows. Given V (1), we randomly choose an
initial condition x(0) and form the snapshot ensemble X at
snapshot times t

(2)
0 , · · · t(2)M , such that number of snapshots

M > M2, and the initial time of the snapshot t(2)0 >> T3,
i.e., such that all eigenfunctions at timescales shorter than T2
are absent in the ensemble. Given the snapshot ensemble X
we “clean” the snapshots by subtracting the contributions of
the eigenfunctions from V (1), i.e.,

x̃(t
(2)
j ) = x(t

(2)
j )−

M1∑
k=1

eλ
(1)
k t

(2)
j (x0, v

(1)
k )v

(1)
k . (18)

Consider the “cleaned” snapshot ensemble X̃ consisting of
the cleaned snapshots from above. It follows that X̃ , by
construction, only contains eigenfunctions from the set V (2)

and thus, following the randomly perturbed POD procedure
outline previously, we can recover all the eigenfunctions in
V (2). Given V (1) and V (2), we can repeat the cleaning,
and randomly perturbed POD procedure, to recursively obtain
all the sets V (n) upto any desired timescale Tn. The above
development can be summarized in the following algorithm:

The development above and the RI-POD algorithm can be
summarized in the following result.

Proposition 3. Under assumptions A1-A3, the RI-POD algo-
rithm can extract all eigenfunctions V (i) corresponding to any
given time scale T (i).

Remark 2. The timescales T1, · · ·Tk are dependent on the
Physics and can be inferred from physical insight or simula-
tions. The number of snapshots that are required to extract the
eigenfunctions have to be “large enough”. Of course, it might
not be possible to know a priori when M is large enough.
However, some amount of trial and error can tell us as to
what is a suitable number for M . In fact, a good heuristic
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Algorithm 1 Algorithm RI-POD
1) Given timescales T1, · · ·TK
2) Set i = 1, V (0) = φ
3) WHILE i ≤ K

DO
a) Choose snapshot times t

(i)
0 , · · · t(i)M , such that

t
(i)
0 >> Ti+1 and M > Mi

b) Set j = 1

i) Choose x
(i)
0,j , the initial condition of the jth

snapshot ensemble at time scale Ti, from
N(0, σ2I) and generate the jth snapshot en-
semble X(i)

j

ii) Clean all the slower eigenfunctions from the
snapshot ensemble using Eq. 18, and the pre-
viously extracted eigenfunctions from the sets
V (1), V (2), · · ·V (i−1)

iii) Isolate the eigenfunctions at timescale Ti, V (i),
using the snapshot POD. Set j = j + 1

iv) If all eigenfunctions in V (i) have been obtained,
go to step (c), else go to step (i)

c) Set i = i+ 1

4) Output the eigenfunctions in sets V (1), · · ·V (K)

measure is to increase the initial time of the snapshots till we
have lesser number of modes participating than the number of
snapshots. This can easily be construed from the eigenvalue
decomposition of the snapshot ensemble by checking for zero
eigenvalues and eigenvectors.

The RI-POD technique is a completely data based
technique and does not need knowledge of the system
matrix A. Note that ultimately, the ROM Ã = T ′AT ,
contains all the information regarding the eigenfunctions
of the operator A under the assumptions above. Again
note that T = XVpΣ

−1/2
p , and thus, it follows that

Ã = T ′AXVpΣ
−1/2
p = T ′X̃VpΣ

−1/2
p , where X̃ is the one

time step advanced version of the snapshot ensemble X (in
the discrete time case), and can be obtained directly from
simulation or experimental data. In the continuous time
case, X̃ may be obtained as follows: advance the snapshots
by a very short time δT , to obtain δX = X ′ − X , where
X ′ is the short time advanced ensemble, and then obtain
X̃ = AX ≈ δX

δT . Hence, the RI-POD technique is truly data
based (this is similar to the DMD technique [28]).

It should also be noted that Proposition 1 does not dis-
tinguish between forced systems and unforced systems since
Assumption 2 under which the result is valid only asks for
certain sufficient conditions on the active eigenfunctions of the
system in the snapshot ensemble. Since the forced response of
a linear system is also expressed in terms of the eigenfunctions,
the RI-POD procedure is valid for forced systems as well
as long as Assumption 2 is valid. Hence, the procedure can
be used on experimental data, where the system response
may be forced. Of course, the issue is that Assumption 2
underlying Proposition 1 may not be satisfied for forced

systems. However, in our experiments we do see that this
assumption is indeed satisfied and that we can actually extract
the eigenfunctions of the forced system using the RI-POD
procedure. Representative results from our experiments are
shown in Figures 1-3. In Figs. 1 and 2, we compare the actual
eigenvalues of a randomly generated 100 x 100 system with
those obtained by the RI-POD procedure, for an unforced as
well as a forced (constant forcing) system. The results show
that the RI-POD eigenvalues agree very well with the actual
eigenvalues. In Fig.3, we show the comparison for a white
noise forced 20 x 20 system (a discrete time case). Again,
this case also shows very good agreement between the RI-
POD eigenvalues and the actual system eigenvalues.
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reduced order model eigenvalues

Fig. 1. Comparison of actual eigenvalues with those obtained using RI-POD
for an unforced 100 x 100 system

IV. APPLICATION OF RI-POD TO FILTERING OF
DISTRIBUTED PARAMETER SYSTEMS

Consider now the continuous -discrete filtering of the dis-
tributed parameter system in the high dimensional discretized
setting:

ẋ = Ax+ w, (19)
y(tk) = Cx(tk) + v(tk), (20)
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Fig. 2. Comparison of actual eigenvalues with those obtained using RI-POD
for a forced 100 x 100 system
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Fig. 3. Comparison of actual eigenvalues with those obtained using RI-POD
for a white noise forced 20 x 20 system

where recall that y(tk) ∈ <p is the measurement at time tk,
w is a continuous white noise process perturbing the systems
while vk is a measurement white noise process corrupting
the measurement at time tk. Typically, the measurements are
very sparse, i.e., p << N , and N is very large. Hence, using
standard estimation theoretic techniques such as the Kalman
filter for filtering the above system is out of question owing to
the high dimensionality of the resulting problem (the Kalman
filter requires O(N2) operations at every update step. Thus, it
is vitally important that suitable ROMs be devised to alleviate
the computational intractability of the problem above. Since
we are considering the discrete setting for filtering, let us
assume that the measurements are taken time T apart.

In order to form a suitable ROM of the above system,
suppose that we keep only Nr of the eigenfunctions of A as
modes of the ROM. The expected value of the error between
the true system and the ROM at any time is given by the
following result.

Proposition 4. The expected value of the squared error in
keeping only Nr modes in the ROM is given by

E||e(t)||2 =

N∑
i=Nr+1

e2λitE|(x(0), vi)|2 +

N∑
i=Nr+1

σ2
i (
e2λit − 1

2λi
),

σ2
i = v′iRW vi, (21)

where Rw represents the covariance of the white noise process
w. The first term in the above expression is due to the
initial conditions while the second term is due to the random
perturbation w.

Proof:
The error incurred in keeping only Nr modes in the ROM is
given by:

e(t) =

N∑
i=Nr+1

eλit(x(0), vi)vi +

N∑
i=Nr+1

∆w
i (t)vi,

where

∆w
i (t) =

∫ t

0

eλi(t−τ)cwi (τ)dτ,

cwi (τ) = (w(τ), vi).

Then , it follows that:

E||e(t)||2 =
∑
i

e2λitE|(x(0), vi)|2 +
∑
i

E|∆w
i (t)|2, (22)

where for notational ease the subscript i is used to denote the
summation from Nr + 1 to N . Then,

|∆w
i (t)|2 =

∫ t

0

∫ t

0

eλi(t−τ)eλi(t−s)cwi (τ)cwi (s)dτds. (23)

Noting that

cwi (τ)cwi (s) = (w(τ), vi)(w(s), vi) =
∑
j,k

wj(τ)wk(s)vijvik,

where vij denotes the jth component of vi, it follows that

E[cwi (τ)cwi (s)] =
∑
j,k

vijvikE[wj(τ)wk(s)]

= v′iRwδ(t− s)vi, (24)

where δ(.) denotes the Dirac delta function. Then, substituting
the above equation back into Eq. 23, and using the result in
Eq. 22, while using the sampling property of the dirac delta
function under an integral, the result follows.

Thus,we have:

E||e(t)||2 ≤
N∑

i=Nr+1

e2λitE|(x(0), vi)|2︸ ︷︷ ︸
initial condition error

+

N∑
i=Nr+1

σ2
i (
−1

2λi
)︸ ︷︷ ︸

random perturbation error

. (25)

The above expression gives an estimate of the error made
in keeping only Nr modes in the solution. Note that the
measurement equations are immaterial in these error estimates
since they do not alter the system equations in any fashion.
In fact, the above is an a priori estimate that is averaged over
all possible future observations.

Given the measurement time interval T , and the probability
density function of the initial state x0, we can neglect those
modes such that e2λiT ≈ 0 and thus, the perturbation due to
the initial condition is negligible. Of course, the error due to
the stochastic perturbations remains, however, theoretically,
we can get all λi since that is assured us by Proposition
3 and RI-POD, and hence, we can make an a priori error
estimate regarding the error made in keeping only Nr modes
of the system.
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Given that we have sufficient number of modes in our ROM
such that the error in the reduced solution is within some pre-
specified bounds, the filtering of the DPS system proceeds as
follows. We choose those eigenfunctions that need to be kept,
given that they have already been extracted using the RI-POD
procedure, and form the ROM for the filtering problem as
follows. Define the transform Vr = [v1, · · · vNr

] consisting of
the retained eigenmodes. The filtering ROM is the following:

ψ̇ = (V ′rAVr)ψ + V ′rw, ψi(0) = (x(0), vi),

y(tk) = (CVr)ψ + vk. (26)

In the above equation ψi represents the ith component of the
ROM state ψ. The above system now results in an NrxNr
filtering problem with Nr << N and thus, standard estimation
theoretic methods such as the Kalman filter can be used to
solve the problem. In the following sections, we show the
application of the RI-POD based filtering technique to the 1-
D Heat equation.

A. Heat Equation

The heat transfer by conduction along a slab is given by
the partial differential equation:

∂T

∂t
=
∂2T

∂x2
(27)

The length of the slab is 1m and the continuous spatial
domain X is divided into 200 grid cells of equal length. The
model is simulated for a period of 10 seconds and the time
horizon is discretized into 500 time steps.

The ROM for the heat equation from Section III is given
by:

ψ̇ = (V ′rAVr)ψ + V ′rw, ψi(0) =< x(0), vi >,

y(tk) = (CVr)ψ + vk. (28)

Using RI-POD, the measurements can be collected from a
random initial condition. The slab is assumed to be heated to
200 C at its left end and the temperature maintained there, for
generating the POD model.

The temperature of the slab is measured at five equispaced
points along its length. In the simulation case shown, the left
end is actually heated to 300 C. The comparisons between
the reduced order filter and full order filter at five different
time steps are shown in Figure 4. The red curves are filter
results from original model and the blue curves are filter
results from the reduced model. In Figure 5, the error, and
the 3σ boundary for the error, for the reduced model, at a
randomly chosen location is shown.

It can be seen that the RI-POD ROM based Kalman filter
provides a good estimate of the temperature profile for the
problem.
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t=10s

Fig. 4. Comparison of ROM filter with actual temperature profile

V. CONCLUSION

In this paper, we have introduced a randomly perturbed
iterative snapshot POD (RI-POD) based approach to form
global ROMs for compact self-adjoint linear systems. We have
used the RI-POD based ROM to form a reduced order Kalman
filter for application to the filtering of linear distributed pa-
rameter systems. We have shown the application of the RI-
POD ROM based filtering technique to the heat equation. In
the future, we will apply our technique to more realistic 2
and 3-dimensional distributed parameter systems that may be
encountered in practice such as chemical plumes and wildfires,
and more ambitiously, 3-D fluid flow problems. Finally, the
RI-POD technique is suitable for symmetric systems, however,
there does not seem to be a straightforward way to extend it
to non-symmetric systems, and thus, this extension could be
another possible avenue for future research.
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